|
|
Chromophobe renal cell carcinoma: Novel molecular insights and clinicopathologic updates |
Reza Alaghehbandana,*( ),Christopher G. Przybycinb,Virginie Verkarrec,Rohit Mehrad,e,f,**( )
|
a Department of Pathology, Faculty of Medicine, University of British Columbia, Royal Columbian Hospital, Vancouver, BC, Canada b Robert J Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA c Department of Pathology, Georges Pompidou European Hospital, AP-HP, Paris University, INSERM UMR 970, PARCC, Paris, France d Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA e Michigan Center for Translational Pathology, Ann Arbor, MI, USA f Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA |
|
|
Abstract Chromophobe renal cell carcinoma (ChRCC) is the third most common renal cell carcinoma (RCC) subtype, which predominantly occurs in sporadic setting. ChRCCs are considered to originate from the intercalated cell of distal tubules with two main morphological variants, classic and eosinophilic. Most ChRCCs carry a favorable clinical outcome. Histology alone is limited in predicting the behavior of ChRCCs that do not have overtly aggressive morphologic findings such as necrosis and sarcomatoid features. Along with positive CD117 expression, classic ChRCCs generally express diffuse and uniform CK7, while eosinophilic variant demonstrates more heterogeneous CK7 expression (rare or patchy). Multiple losses of chromosomes 1, 2, 6, 10, 13, 17, and 21 are considered to be the genetic hallmarks of classic and eosinophilic ChRCCs, while chromosomal gains are known to be associated with sarcomatoid ChRCCs. TP53 and PTEN are the two most frequently mutated genes in ChRCCs. The major challenge in the differential diagnosis of ChRCCs includes considerations around the eosinophilic variant (of ChRCCs), where it may share overlapping features with oncocytoma or other recent emergent oncocytic tumors. Most eosinophilic ChRCCs share expression of the recently described biomarkers, LINC01187 and FOXI1, with classic ChRCCs, however, a subset of eosinophilic-like ChRCCs with lower biomarker expression have been demonstrated to harbor MTOR gene mutations. Overall, the morphologic features of ChRCCs and genetic profile with combinations of chromosomal losses and gains suggest this tumor entity to represent a distinct, yet heterogeneous group of renal neoplasms.
|
Received: 24 August 2021
Available online: 20 January 2022
|
Corresponding Authors:
Reza Alaghehbandan,Rohit Mehra
E-mail: reza.alagh@gmail.com;mrohit@med.umich.edu
|
|
|
|
Classic and sarcomatoid ChRCCs. (A) Classic ChRCC H & E stain; (B) Sarcomatoid ChRCC H & E stain; (C) Membranous staining for CD117; (D) High-level nuclear LINC01187 expression. All images are at 200×. ChRCC, chromophobe renal cell carcinoma; H & E, hematoxylin and eosin.
|
|
Eosinophilic variant of ChRCC. (A) Eosinophilic variant of ChRCC H&E stain; (B) Predominantly membranous staining for CD117; (C) The nuclear staining for FOXI1 in eosinophilic variant of ChRCC; (D) High-level nuclear LINC01187 expression; (E) Another example of eosinophilic variant of ChRCC H & E stain; (F) With negative CD117 expression and MTOR gene mutation (data not shown). All images are at 200×. ChRCC, chromophobe renal cell carcinoma; H & E, hematoxylin and eosin.
|
|
Distribution of chromosomal losses and gains in classic, eosinophilic and sarcomatoid ChRCC. ChRCC, chromophobe renal cell carcinoma.
|
Genetic alteration | ChRCC | CCRCC | PRCC | Main chromosomal numerical variation | - Multiple chromosomal losses [1,2,6,10,13,17,21] and gains [1,2,6,10,17] more frequent in sarcomatoid ChRCC | - Loss of 3p (91%), gains of 5q (67%), loss of 14q (45%), del 9p21 (CDKN2A locus), and del 10q23 (PTEN locus) | - Trisomy7(50%-100%), Trisomy 17 (66%-100%), and loss of Y (77%-100%) | Main genetic aberration | - TP53 (32%-64%), PTEN (9%-45%), and TERT promoter mutations/rearrangements (6%-12%) | - VHL(75%),PBRM1(33%-40%), BAP1 (10%), and SETD2 | - MET (17%-21% in type 1), and some with mutations in BAP1, SETD2, ARID2, KEAP1, TERT promoter, CDKN2A/B, and NF2 | Methylation status | - Hypomethylated,less frequently hypermethylated (mostly in advanced stage) | - Hypermethylated (subset) | - Hypermethylated (subset) |
|
Molecular aberrations and mutation summary for ChRCC including a comparison with CCRCC and PRCC.
|
Renal tumor subtype | Clinical feature | Morphologic feature | Ancillary feature | Molecular aberration | ChRCC | - Majorityindolent, 3%-10% metastasis; mostly sporadic; rare hereditary setting (TSC, BHD, and Cowden) | - Large pale cells with prominent cell membranes, +/- admixed with granular eosinophilic cytoplasm and wrinkled nuclei with perinuclear haloes, solid/large alveolar architecture with incomplete vascular septa | - CD117+;usually diffuse CK7+ (sometimes focal or negative); positive expression of LINC01187 and FOXI1; vimentin- | - Multiple chromosomallosses and gains; TP53 and PTEN gene mutations; other less common mutations | Eosinophilic variant of ChRCC | - Similar to ChRCC | - Granulareosinophilic cytoplasm, perinuclear haloes, and nested architecture | - CD117+; more focal CK7+; expression of LINC01187 and FOXI1; vimentin-; SDHB retained | - Diploidormultiple chromosomal losses | Oncocytoma | - Benignandmostly sporadic | - Granulareosinophilic cytoplasm, central “archipelagos”, uniform round nuclei with minimal atypia and no mitotic activity | - CD117+;focalto negative CK7; positive for LINC01187 and FOXI1 | - Diploid or hypodiploid (-1, X, Y, 14, 21); 11q13 (CCND1 locus) rearrangement; mutation in mitochondrial gene | Hybrid oncocytic tumor | - Exceptionalmetastases; usually associated with BHD | - Features of oncocytoma and ChRCC in the same tumor | - Variable;generally CD117+; CK7 focal to patchy | - Germline mutations in FLCN encoding folliculin | Low-grade oncocytic RCC, unclassified or oncocytic renal neoplasm of low malignant potential | - Presumably indolent | - Resembles oncocytoma with greater nuclear atypia and absence of diagnostic features of another oncocytic neoplasm | - GenerallyCD117+; CK7 variable | - Unknown | ESC-RCCa | - Established, metastatic potential; sporadic or germline | - Solid and cystic architecture, abundant cytoplasm with coarse basophilic granules | - Usually CK20+; CK7- or focal; CD117-; vimentin+ | - TSC1/TSC2 somatic or germline mutations | LOTa | - Indolentband mostly sporadic | - Solidarchitecturewith edematous areas, monomorphic round to oval nuclei with delicate perinuclear haloes | - CK7+diffusely; CD117-; vimentin-; SDHB retained | - Disomicordel 19p13, 19q13, 1p36; MTOR gene mutations in borderline tumor or closely similar tumor | EVTa | - Indolentb;sporadic or germline | - Solid/nested growth, oncocytic cytoplasm with large vacuoles, and prominent nucleoli | - CD117+;CK7-or focal+; vimentin-; cathepsin-K+; CK20-; SDHB retained | - TSC2/MTORgene mutations; loss of chromosomes 1 and 19, LOH of 16p11.2-11.1; 7q31.31 | SDH-deficient RCC | - Established metastatic potential; germline | - Eosinophilic cytoplasm with vacuoles containing eosinophilic to pale flocculent material | - Loss of SDHB; CD117-; CK7- | - Germline mutations in one of the SDH genes | ALK-RCC | - Established metastatic potential | - Eosinophilic cytoplasm, variable and admixed architecture, mucinous/myxoid background | - ALK+; SDHB and FH retained | - Rearrangementof ALK with various partners |
|
Clinical, histologic, immunophenotypic, and molecular summary of ChRCC, eosinophilic variant, and overlapping entities.
|
[1] |
Thoenes W, Storkel S, Rumpelt HJ. Human chromophobe cell renal carcinoma. Virchows Arch B Cell Pathol Incl Mol Pathol 1985; 48:207e17.
|
[2] |
MacLennan GT, Cheng L. Five decades of urologic pathology: The accelerating expansion of knowledge in renal cell neoplasia. Hum Pathol 2020; 95:24e45.
|
[3] |
Storkel S, Steart PV, Drenckhahn D, Thoenes W. The human chromophobe cell renal carcinoma: Its probable relation to intercalated cells of the collecting duct. Virchows Arch B Cell Pathol Incl Mol Pathol 1989; 56:237e45.
|
[4] |
Moch H, Humphrey PA, Ulbright TM, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. Lyon,France: International Agency for Research on Cancer; 2016. p27e8.
|
[5] |
Colomba E, Le Teuff G, Eisen T, Stewart GD, Fife K, Larkin J, et al. Metastatic chromophobe renal cell carcinoma treated with targeted therapies: A Renal Cross Channel Group study. Eur J Cancer 2017; 80:55e62.
|
[6] |
Ohashi R, Martignoni G, Hartmann A, Calio A, Segala D, Stohr C, et al. Multi-institutional re-evaluation of prognostic factors in chromophobe renal cell carcinoma: Proposal of a novel twotiered grading scheme. Virchows Arch 2020; 476:409e18.
|
[7] |
Przybycin CG, Cronin AM, Darvishian F, Gopalan A, Al- Ahmadie HA, Fine SW, et al. Chromophobe renal cell carcinoma: A clinicopathologic study of 203 tumors in 200 patients with primary resection at a single institution. Am J Surg Pathol 2011; 35:962e70.
|
[8] |
Linehan WM, Ricketts CJ. The metabolic basis of kidney cancer. Semin Cancer Biol 2013; 23:46e55.
|
[9] |
Benusiglio PR, Giraud S, Deveaux S, Mejean A, Correas JM, Joly D, et al. Renal cell tumour characteristics in patients with the Birt-Hogg-Dube′ cancer susceptibility syndrome: A retrospective, multicentre study. Orphanet J Rare Dis 2014; 9:163. https://doi.org/10.1186/s13023-014-0163-z.
doi: 10.1186/s13023-014-0163-z
pmid: 25519458
|
[10] |
Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM, et al. Renal tumors in the Birt-Hogg-Dube′ syndrome. Am J Surg Pathol 2002; 26:1542e52.
|
[11] |
Iribe Y, Yao M, Tanaka R, Kuroda N, Nagashima Y, Nakatani Y, et al. Genome-wide uniparental disomy and copy number variations in renal cell carcinomas associated with Birt-Hogg- Dube′ syndrome. Am J Pathol 2016; 186:337e46.
|
[12] |
Yang P, Cornejo KM, Sadow PM, Cheng L, Wang M, Xiao Y, et al. Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol 2014; 38:895e909.
|
[13] |
Guo J, Tretiakova MS, Troxell ML, Osunkoya AO, Fadare O, Sangoi AR, et al. Tuberous sclerosis-associated renal cell carcinoma: A clinicopathologic study of 57 separate carcinomas in 18 patients. Am J Surg Pathol 2014; 38:1457e67.
|
[14] |
Shuch B, Ricketts CJ, Vocke CD, Komiya T, Middelton LA, Kauffman EC, et al. Germline PTEN mutation Cowden syndrome: An underappreciated form of hereditary kidney cancer. J Urol 2013; 190:1990e8.
|
[15] |
Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 2003; 27:612e24.
|
[16] |
Volpe A, Novara G, Antonelli A, Bertini R, Billia M, Carmignani G, et al. Chromophobe renal cell carcinoma (RCC): Oncological outcomes and prognostic factors in a large multicentre series. BJU Int 2012; 110:76e83.
|
[17] |
Yip SM, Ruiz Morales JM, Donskov F, Fraccon A, Basso U, Rini BI, et al. Outcomes of metastatic chromophobe renal cell carcinoma (chrRCC) in the targeted therapy era: Results from the International Metastatic Renal Cell Cancer Database Consortium (IMDC). Kidney Cancer 2017; 1:41e7.
|
[18] |
Ged Y, Chen YB, Knezevic A, Casuscelli J, Redzematovic A, DiNatale RG, et al. Metastatic chromophobe renal cell carcinoma: Presence or absence of sarcomatoid differentiation determines clinical course and treatment outcomes. Clin Genitourin Cancer 2019; 17:e678e88. https://doi.org/10.1016/j.clgc.2019.03.018. https://doi.org/10.1016/j.clgc.2019.03.018
|
[19] |
Lee W. Imprint cytology of the chromophobe renal cell carcinoma: Correlation with the histological and ultrastructural features. J Cytol 2011; 28:77e80.
|
[20] |
Tickoo SK, Lee MW, Eble JN, Amin M, Christopherson T, Zarbo RJ, et al. Ultrastructural observations on mitochondria and microvesicles in renal oncocytoma, chromophobe renal cell carcinoma, and eosinophilic variant of conventional (clear cell) renal cell carcinoma. Am J Surg Pathol 2000; 24:1247e56.
|
[21] |
Thoenes W, Storkel S, Rumpelt HJ, Moll R, Baum HP, Werner S. Chromophobe cell renal carcinoma and its variantsda report on 32 cases. J Pathol 1988; 155:277e87.
|
[22] |
Cheville JC, Lohse CM, Zincke H, Weaver AL, Leibovich BC, Frank I, et al. Sarcomatoid renal cell carcinoma: An examination of underlying histologic subtype and an analysis of associations with patient outcome. Am J Surg Pathol 2004; 28:435e41.
|
[23] |
Amin MB, Paner GP, Alvarado-Cabrero I, Young AN, Stricker HJ, Lyles RH, et al. Chromophobe renal cell carcinoma: Histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 145 cases. Am J Surg Pathol 2008; 32:1822e34.
|
[24] |
de Peralta-Venturina M, Moch H, Amin M, Tamboli P, Hailemariam S, Mihatsch M, et al. Sarcomatoid differentiation in renal cell carcinoma: A study of 101 cases. Am J Surg Pathol 2001; 25:275e84.
|
[25] |
Peckova K, Martinek P, Ohe C, Kuroda N, Bulimbasic S, Condom Mundo E, et al. Chromophobe renal cell carcinoma with neuroendocrine and neuroendocrine-like features. Morphologic, immunohistochemical, ultrastructural, and array comparative genomic hybridization analysis of 18 cases and review of the literature. Ann Diagn Pathol 2015; 19:261e8.
|
[26] |
Michal M, Hes O, Svec A, Ludvikova M. Pigmented microcystic chromophobe cell carcinoma: A unique variant of renal cell carcinoma. Ann Diagn Pathol 1998; 2:149e53.
|
[27] |
Hes O, Vanecek T, Perez-Montiel DM, Alvarado Cabrero I, Hora M, Suster S, et al. Chromophobe renal cell carcinoma with microcystic and adenomatous arrangement and pigmentationda diagnostic pitfall. Morphological, immunohistochemical, ultrastructural and molecular genetic report of 20 cases. Virchows Arch 2005; 446:383e93.
|
[28] |
Dundr P, Pesl M, Povysil C, Tvrdik D, Pavlik I, Soukup V, et al. Pigmented microcystic chromophobe renal cell carcinoma. Pathol Res Pract 2007; 203:593e7.
|
[29] |
Kuroda N, Tamura M, Hes O, Michal M, Gatalica Z. Chromophobe renal cell carcinoma with neuroendocrine differentiation and sarcomatoid change. Pathol Int 2011; 61:552e4.
|
[30] |
Parada DD, Pena KB. Chromophobe renal cell carcinoma with neuroendocrine differentiation. APMIS 2008; 116:859e65.
|
[31] |
Michalova K, Tretiakova M, Pivovarcikova K, Alaghehbandan R, Perez Montiel D, Ulamec M, et al. Expanding the morphologic spectrum of chromophobe renal cell carcinoma: A study of 8 cases with papillary architecture. Ann Diagn Pathol 2019; 44: 151448. https://doi.org/10.1016/j.anndiagpath.2019.151448. https://doi.org/10.1016/j.anndiagpath.2019.151448
doi: 10.1016/j.anndiagpath.2019.151448
|
[32] |
Taylor AS, Spratt DE, Dhanasekaran SM, Mehra R. Contemporary renal tumor categorization with biomarker and translational updates: A practical review. Arch Pathol Lab Med 2019; 143:1477e91.
|
[33] |
Williamson SR, Gill AJ, Argani P, Chen YB, Egevad L, Kristiansen G, et al. Report from the International Society of Urological Pathology (ISUP) consultation conference on molecular pathology of urogenital cancers: III: Molecular pathology of kidney cancer. Am J Surg Pathol 2020; 44:e47e65. https://doi.org/10.1097/PAS.0000000000001476.
|
[34] |
Skinnider BF, Jones EC. Renal oncocytoma and chromophobe renal cell carcinoma. A comparison of colloidal iron staining and electron microscopy. Am J Clin Pathol 1999; 111:796e803.
|
[35] |
Chen F, Zhang Y, Senbabaoglu Y, Ciriello G, Yang L, Reznik E, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep 2016; 14:2476e89.
|
[36] |
Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 2014; 26:319e30.
|
[37] |
Skala SL, Wang X, Zhang Y, Mannan R, Wang L, Narayanan SP, et al. Next-generation RNA sequencing-based biomarker characterization of chromophobe renal cell carcinoma and related oncocytic neoplasms. Eur Urol 2020; 78:63e74.
|
[38] |
Lindgren D, Eriksson P, Krawczyk K, Nilsson H, Hansson J, Veerla S, et al. Cell-type-specific gene programs of the normal human nephron define kidney cancer subtypes. Cell Rep 2017; 20:1476e89.
|
[39] |
Drevik J, Abbosh P. Novel biomarkers in chromophobe renal cell carcinoma: Distinguishing it from its mimics. Eur Urol 2020; 78:75e6.
|
[40] |
Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 2020; 180: 207. https://doi.org/10.1016/j.cell.2019.12.026. https://doi.org/10.1016/j.cell.2019.12.026
|
[41] |
Lopez-Beltran A, Montironi R, Cimadamore A, Cheng L. Grading of chromophobe renal cell carcinoma: Do we need it? Eur Urol 2021; 79:232e3.
|
[42] |
Avulova S, Cheville JC, Lohse CM, Gupta S, Potretzke TA, Tsivian M, et al. Grading chromophobe renal cell carcinoma: Evidence for a four-tiered classification incorporating coagulative tumor necrosis. Eur Urol 2021; 79:225e31.
|
[43] |
Cheville JC, Lohse CM, Sukov WR, Thompson RH, Leibovich BC. Chromophobe renal cell carcinoma: The impact of tumor grade on outcome. Am J Surg Pathol 2012; 36:851e6.
|
[44] |
Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi- Galluzzi C McKenney J, et al. The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol 2013; 37:1490e504.
|
[45] |
Delahunt B, McKenney JK, Lohse CM, Leibovich BC, Thompson RH, Boorjian SA, et al. A novel grading system for clear cell renal cell carcinoma incorporating tumor necrosis. Am J Surg Pathol 2013; 37:311e22.
|
[46] |
Paner GP, Amin MB, Alvarado-Cabrero I, Young AN, Stricker HJ, Moch H, et al. A novel tumor grading scheme for chromophobe renal cell carcinoma: Prognostic utility and comparison with Fuhrman nuclear grade. Am J Surg Pathol 2010; 34:1233e40.
|
[47] |
Akhtar M, Chantziantoniou N. Quantitative image cell analysis of cytologic smears for DNA ploidy in renal parenchymal neoplasms. Diagn Cytopathol 1999; 21:223e9.
|
[48] |
Crotty TB, Lawrence KM, Moertel CA, Bartelt DH, Batts KP, Dewald GW, et al. Cytogenetic analysis of six renal oncocytomas and a chromophobe cell renal carcinoma. Evidence that -Y, -1 may be a characteristic anomaly in renal oncocytomas. Cancer Genet Cytogenet 1992; 61:61e6.
|
[49] |
Kovacs A, Kovacs G. Low chromosome number in chromophobe renal cell carcinomas. Genes Chromosomes Cancer 1992; 4:267e8.
|
[50] |
Kovacs A, Storkel S, Thoenes W, Kovacs G. Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. J Pathol 1992; 167:273e7.
|
[51] |
Kovacs G, Soudah B, Hoene E. Binucleated cells in a human renal cell carcinoma with 34 chromosomes. Cancer Genet Cytogenet 1988; 31:211e5.
|
[52] |
Speicher MR, Schoell B, du Manoir S, Schrock E, Ried T, Cremer T, et al. Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am J Pathol 1994; 145:356e64.
|
[53] |
Alaghehbandan R, Trpkov K, Tretiakova M, Luis AS, Rogala JD, Hes O. Comprehensive review of numerical chromosomal aberrations in chromophobe renal cell carcinoma including its variant morphologies. Adv Anat Pathol 2021; 28:8e20.
|
[54] |
Linehan WM, Ricketts CJ. The cancer genome atlas of renal cell carcinoma: Findings and clinical implications. Nat Rev Urol 2019; 16:539e52.
|
[55] |
Brunelli M, Gobbo S, Cossu-Rocca P, Cheng L, Hes O, Delahunt B, et al. Chromosomal gains in the sarcomatoid transformation of chromophobe renal cell carcinoma. Mod Pathol 2007; 20:303e9.
|
[56] |
Kang XL, Zou H, Pang LJ, Hu WH, Zhao J, Qi Y, et al. Chromosomal imbalances revealed in primary renal cell carcinomas by comparative genomic hybridization. Int J Clin Exp Pathol 2015; 8:3636e47.
|
[57] |
Ren Y, Liu K, Kang X, Pang L, Qi Y, Hu Z, et al. Chromophobe renal cell carcinoma with and without sarcomatoid change: A clinicopathological, comparative genomic hybridization, and whole-exome sequencing study. Am J Transl Res 2015; 7:2482e99.
|
[58] |
Sperga M, Martinek P, Vanecek T, Grossmann P, Bauleth K, Perez-Montiel D, et al. Chromophobe renal cell carcinomachromosomal aberration variability and its relation to Paner grading system: An array CGH and FISH analysis of 37 cases. Virchows Arch 2013; 463:563e73.
|
[59] |
Tan MH, Wong CF, Tan HL, Yang XJ, Ditlev J, Matsuda D, et al. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma. BMC Cancer 2010; 10:196. https://doi.org/10.1186/1471-2407-10-196.
doi: 10.1186/1471-2407-10-196
|
[60] |
Verdorfer I, Hobisch A, Hittmair A, Duba HC, Bartsch G, Utermann G, et al. Cytogenetic characterization of 22 human renal cell tumors in relation to a histopathological classification. Cancer Genet Cytogenet 1999; 111:61e70.
|
[61] |
Vieira J, Henrique R, Ribeiro FR, Barros-Silva JD, Peixoto A, Santos C, et al. Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Genes Chromosomes Cancer 2010; 49:935e47.
|
[62] |
Liu YJ, Ussakli C, Antic T, Liu Y, Wu Y, True L, et al. Sporadic oncocytic tumors with features intermediate between oncocytoma and chromophobe renal cell carcinoma: Comprehensive clinicopathological and genomic profiling. Hum Pathol 2020; 104:18e29.
|
[63] |
Gunawan B, Bergmann F, Braun S, Hemmerlein B, Ringert RH, Jakse G, et al. Polyploidization and losses of chromosomes 1, 2, 6, 10, 13, and 17 in three cases of chromophobe renal cell carcinomas. Cancer Genet Cytogenet 1999; 110:57e61.
|
[64] |
Foix MP, Dunatov A, Martinek P, Mundo EC, Suster S, Sperga M, et al. Morphological, immunohistochemical, and chromosomal analysis of multicystic chromophobe renal cell carcinoma, an architecturally unusual challenging variant. Virchows Arch 2016; 469:669e78.
|
[65] |
Ohe C, Kuroda N, Matsuura K, Kai T, Moriyama M, Sugiguchi S, et al. Chromophobe renal cell carcinoma with neuroendocrine differentiation/morphology: A clinicopathological and genetic study of three cases. Hum Pathol: Case Reports 2014; 1:31e9.
|
[66] |
Mokhtar GA, Al-Zahrani R. Chromophobe renal cell carcinoma of the kidney with neuroendocrine differentiation: A case report with review of literature. Urol Ann 2015; 7:383e6.
|
[67] |
Durinck S, Stawiski EW, Pavia-Jimenez A, Modrusan Z, Kapur P, Jaiswal BS, et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet 2015; 47:13e21.
|
[68] |
Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 2018; 23: 313e326e5. https://doi.org/10.1016/j.celrep.2018.03.075.
|
[69] |
Casuscelli J, Becerra MF, Manley BJ, Zabor EC, Reznik E, Redzematovic A, et al. Characterization and impact of TERT promoter region mutations on clinical outcome in renal cell carcinoma. Eur Urol Focus 2019; 5:642e9.
|
[70] |
Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 2018; 23: 3698. https://doi.org/10.1016/j.celrep.2018.06.032.
|
[71] |
Ohashi R, Schraml P, Angori S, Batavia AA, Rupp NJ, Ohe C, et al. Classic chromophobe renal cell carcinoma incur a larger number of chromosomal losses than seen in the eosinophilic subtype. Cancers 2019; 11:1492. https://doi.org/10.3390/cancers11101492.
doi: 10.3390/cancers11101492
|
[72] |
Roldan-Romero JM, Santos M, Lanillos J, Caleiras E, Anguera G, Maroto P, et al. Molecular characterization of chromophobe renal cell carcinoma reveals mTOR pathway alterations in patients with poor outcome. Mod Pathol 2020; 33:2580e90.
|
[73] |
Casuscelli J, Weinhold N, Gundem G, Wang L, Zabor EC, Drill E, et al. Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma. JCI Insight 2017; 2:e92688. https://doi.org/10.1172/jci.insight.92688.
|
[74] |
Gill AJ, Hes O, Papathomas T, Sedivcova M, Tan PH, Agaimy A, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: A morphologically distinct entity: A clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol 2014; 38:1588e602.
|
[75] |
Trpkov K, Williamson SR, Gill AJ, Adeniran AJ, Agaimy A, Alaghehbandan R, et al. Novel, emerging and provisional renal entities: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 2021; 34:1167e84.
|
[76] |
Trpkov K, Hes O, Bonert M, Lopez JI, Bonsib SM, Nesi G, et al. Eosinophilic, solid, and cystic renal cell carcinoma: Clinicopathologic study of 16 unique, sporadic neoplasms occurring in women. Am J Surg Pathol 2016; 40:60e71.
|
[77] |
Siadat F, Trpkov K. ESC, ALK, HOT and LOT: Three letter acronyms of emerging renal entities knocking on the door of the WHO classification. Cancers 2020; 12:168. https://doi.org/10.3390/cancers12010168.
doi: 10.3390/cancers12010168
|
[78] |
Trpkov K, Williamson SR, Gao Y, Martinek P, Cheng L, Sangoi AR, et al. Low-grade oncocytic tumour of kidney (CD117-negative, cytokeratin 7-positive): A distinct entity? Histopathology 2019; 75:174e84.
|
[79] |
Tjota M, Chen H, Parilla M, Wanjari P, Segal J, Antic T. Eosinophilic renal cell tumors with a TSC and MTOR gene mutations are morphologically and immunohistochemically heterogenous: Clinicopathologic and molecular study. Am J Surg Pathol 2020; 44:943e54.
|
[80] |
Lerma LA, Schade GR, Tretiakova MS. Co-existence of ESCRCC, EVT, and LOT as synchronous and metachronous tumors in six patients with multifocal neoplasia, but without clinical features of tuberous sclerosis complex. Hum Pathol 2021; 116:1e11.
|
[81] |
Kravtsov O, Gupta S, Cheville JC, Sukov WR, Rowsey R, Herrera- Hernandez LP, et al. Low-grade oncocytic tumor of kidney (CK7-positive, CD117-negative): Incidence in a single institutional experience with clinicopathological and molecular characteristics. Hum Pathol 2021; 114:9e18.
|
[82] |
Sukov WR, Hodge JC, Lohse CM, Akre MK, Leibovich BC, Thompson RH, et al. ALK alterations in adult renal cell carcinoma: Frequency, clinicopathologic features and outcome in a large series of consecutively treated patients. Mod Pathol 2012; 25:1516e25.
|
[83] |
Kuroda N, Trpkov K, Gao Y, Tretiakova M, Liu YJ, Ulamec M, et al. ALK rearranged renal cell carcinoma (ALK-RCC): A multiinstitutional study of twelve cases with identification of novel partner genes CLIP1, KIF5B and KIAA1217. Mod Pathol 2020; 33:2564e79.
|
[84] |
He H, Trpkov K, Martinek P, Isikci OT, Maggi-Galuzzi C, Alaghehbandan R, et al. "High-grade oncocytic renal tumor": Morphologic, immunohistochemical, and molecular genetic study of 14 cases. Virchows Arch 2018; 473:725e38.
|
[85] |
Chen YB, Mirsadraei L, Jayakumaran G, Al-Ahmadie HA, Fine SW, Gopalan A, et al. Somatic mutations of TSC2 or MTOR characterize a morphologically distinct subset of sporadic renal cell carcinoma with eosinophilic and vacuolated cytoplasm. Am J Surg Pathol 2019; 43:121e31.
|
[86] |
Kapur P, Gao M, Zhong H, Rakheja D, Cai Q, Pedrosa I, et al. Eosinophilic vacuolated tumor of the kidney: A review of evolving concepts in this novel subtype with additional insights from a case with MTOR mutation and concomitant chromosome 1 loss. Adv Anat Pathol 2021; 28:251e7.
|
[87] |
van Oostenbrugge TJ, Futterer JJ, Mulders PFA. Diagnostic imaging for solid renal tumors: A pictorial review. Kidney Cancer 2018; 2:79e93.
|
[88] |
Sanchez A, Feldman AS, Hakimi AA. Current management of small renal masses, including patient selection, renal tumor biopsy, active surveillance, and thermal ablation. J Clin Oncol 2018; 36:3591e600.
|
[89] |
Wobker SE, Williamson SR. Modern pathologic diagnosis of renal oncocytoma. J Kidney Cancer VHL 2017; 4:1e12.
|
[90] |
Williamson SR, Gadde R, Trpkov K, Hirsch MS, Srigley JR, Reuter VE, et al. Diagnostic criteria for oncocytic renal neoplasms: A survey of urologic pathologists. Hum Pathol 2017; 63:149e56.
|
[91] |
Garje R, Elhag D, Yasin HA, Acharya L, Vaena D, Dahmoush L. Comprehensive review of chromophobe renal cell carcinoma. Crit Rev Oncol Hematol 2021; 160:103287. https://doi.org/10.1016/j.critrevonc.2021.103287.
|
[92] |
Trpkov K, Hes O, Williamson SR, Adeniran AJ, Agaimy A, Alaghehbandan R, et al. New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 2021; 34:1392e424.
|
[1] |
Lexiaochuan Wen,Cameron J. Britton,Rohan Garje,Benjamin W. Darbro,Vignesh T. Packiam. The emerging role of somatic tumor sequencing in the treatment of urothelial cancer[J]. Asian Journal of Urology, 2021, 8(4): 391-399. |
[2] |
Michael C. Phung,Andrew R. Rouse,Jayce Pangilinan,Robert C. Bell,Erika R. Bracamonte,Sharfuddeen Mashi,Arthur F. Gmitro,Benjamin R. Lee. Investigation of confocal microscopy for differentiation of renal cell carcinoma versus benign tissue. Can an optical biopsy be performed?[J]. Asian Journal of Urology, 2020, 7(4): 363-368. |
[3] |
Dean Laganosky,Christopher P. Filson,Dattatraya Patil,Viraj A. Master. Survival benefit with extended lymphadenectomy for advanced renal malignancy: A population-based analysis[J]. Asian Journal of Urology, 2020, 7(1): 29-36. |
[4] |
Ling Xie,Yifen Zhang,Chin-Lee Wu. Microphthalmia family of transcription factors associated renal cell carcinoma[J]. Asian Journal of Urology, 2019, 6(4): 312-320. |
[5] |
Arun Ramdas Menon,T.P. Rajeev,Suresh Nivedita,Suraj Hegde. Mixed epithelial and stromal tumour with extension to vesicoureteric junction[J]. Asian Journal of Urology, 2019, 6(3): 302-304. |
[6] |
Fangyuan Zhang,Gang Zhao,Pengjie Wu,Qi An,Yang Yang,Xin Chen,Jianye Wang,Dong Wei. Asynchronous abdominal wall and sigmoid metastases in clear cell renal cell carcinoma: A case report and literature review[J]. Asian Journal of Urology, 2019, 6(2): 210-214. |
[7] |
R. Sekar Rishi,Patil Dattatraya,Baum Yoram,Pearl Jeffrey,Bausum Anna,A. Bilen Mehmet,Kucuk Omer,B. Harris Wayne,C. Carthon Bradley,Alemozaffar Mehrdad,P. Filson Christopher,G. Pattaras John,T. Nieh Peter,Ogan Kenneth,A. Master Viraj. A novel preoperative inflammatory marker prognostic score in patients with localized[J]. Asian Journal of Urology, 2017, 4(4): 230-238. |
[8] |
Vinay R. Patel, Bradley A. Morganstern, Louis R. Kavoussi. Persistent cough as a paraneoplastic presenting symptom in six patients with renal cell carcinoma[J]. Asian Journal of Urology, 2017, 4(1): 10-13. |
[9] |
Jun Gong, Manuel Caitano Maia, Nazli Dizman, Ameish Govindarajan, Sumanta K. Pal. Metastasis in renal cell carcinoma: Biology and implications for therapy[J]. Asian Journal of Urology, 2016, 3(4): 286-292. |
[10] |
Shirley Cheng, Jie-Fu Chen, Yi-Tsung Lu, Leland W. K. Chung, Hsian-Rong Tseng, Edwin M. Posadas. Applications of circulating tumor cells for prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 254-259. |
[11] |
Zhiying Shao, Andrew Z. Wang, Daniel J. George, Tian Zhang. Novel immunotherapy approaches for metastatic urothelial and renal cell carcinoma[J]. Asian Journal of Urology, 2016, 3(4): 268-277. |
[12] |
Rishi R. Sekar, Claire M. De La Calle, Dattatraya Patil, Sarah A. Holzman, Yoram Baum, Umer Sheikh, Jonathan H. Huang, Adeboye O. Osunkoya, Brian P. Pollack, Haydn T. Kissick, Kenneth Ogan, Viraj A. Master. Major histocompatibility complex I upregulation in clear cell renal cell carcinoma is associated with increased survival[J]. Asian Journal of Urology, 2016, 3(2): 75-81. |
[13] |
Rongfu Liu, Xiangcheng Qin, Chengyong Ji, Weixin Zeng, Yufeng Yang, Wei Tan. Pygopus 2 promotes kidney cancer OS-RC-2 cells proliferation and invasion in vitro and in vivo[J]. Asian Journal of Urology, 2015, 2(3): 151-157. |
[14] |
Jiabin An, Yanchuan Guo, Ting Wang, Allan J. Pantuck, Matthew B. Rettig. Pomegranate extract inhibits EMT in clear cell renal cell carcinoma in a NF-κB and JNK dependent manner[J]. Asian Journal of Urology, 2015, 2(1): 38-45. |
[15] |
Sumanta K. Pal, Paulo Bergerot, Robert A. Figlin. Renal cell carcinoma: An update for the practicing urologist[J]. Asian Journal of Urology, 2015, 2(1): 19-25. |
|
|
|
|