|
|
The emerging role of somatic tumor sequencing in the treatment of urothelial cancer |
Lexiaochuan Wena,Cameron J. Brittona,Rohan Garjeb,Benjamin W. Darbroc,Vignesh T. Packiamd,*( )
|
a Department of Urology, Mayo Clinic, Rochester, MN, USA b Division of Hematology, Oncology, Blood & Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA c Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA d Department of Urology, University of Iowa, Iowa City, IA, USA |
|
|
Abstract The development of rapid genome sequencing has greatly enhanced our understanding of the molecular biology underlying many malignancies. Whole exome sequencing has highlighted the individualistic nature of malignancies on a patient-to-patient basis and begun to revolutionize therapeutic approaches. In recent years, whole genome sequencing of urothelial malignancies has identified a host of somatic mutations which contribute to growth, progression, and metastasis of urothelial carcinoma of the bladder and upper tract urothelial carcinoma. As genetic sequencing continues, additional targets will be identified, allowing development of novel therapeutic agents targeting cancer on a molecular level, with the goal of delivering highly individualized care based on the underlying mutational profile of the patient's malignancy. In this review, we aim to discuss known genetic alterations of urothelial malignancy and the implications these mutations carry in terms of prognostication and development of targeted therapeutic agents. We will focus on RNA-expression profiling and genomic DNA profiling, with a focus on comprehensive whole exome and whole genome sequencing relative to selected urothelial carcinoma-associated genes and circulating tumor DNA analysis.
|
Received: 17 September 2020
Available online: 20 October 2021
|
Corresponding Authors:
Vignesh T. Packiam
E-mail: vignesh-packiam@uiowa.edu
|
|
|
Marker | Function | Predictive utility | Neoadjuvant regimen | DDR proteins | Cell cycle regulations | Enrichment predicts response | AMVAC [21] | ERCC2 | Nucleotide excision repair gene | Enrichment predicts response | GC, ddMVAC, GC-Sunitinib, ddGC [30]; AMVAC, ddGC [55] | FGFR3 | Fibroblast growth receptor | Enrichment improves survival | Not applicable [42] | P53 | Tumor suppressor | Absence of alteration predicts response | MVAC, PAC, EP [58]; ddMVAC [59] | Immune190 signature, IFN gamma, and IFN alpha | Biomarkers | Enrichment predicts response | Pembrolizumab [62] | pCR and MPR | Biomarkers | Enrichment predicts response | Atezolizumab [64] |
|
Predictors of response to neoadjuvant bladder cancer therapies prior to cystectomy in MIBC.
|
[1] |
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455:1061e8.
|
[2] |
International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature 2010; 464:993e8.
|
[3] |
Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation anal-ysis of cancer genes across 21 tumour types. Nature 2014; 505:495e501.
|
[4] |
Shoag JE, Wise DR, Sharaf RN, Sternberg CN. Somatic and germline sequencing in genitourinary oncology: Genetics for the clinician. Curr Opin Urol 2019; 29:315e8.
|
[5] |
Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2019; 17:479e505.
|
[6] |
Gupta S, Provenzale D, Llor X, Halverson AL, Grady W, Chung DC, et al. NCCN Guidelines insights: Genetic/familial high-risk assessment: colorectal, version 2.2019. J Natl Compr Canc Netw 2019; 17:1032e41.
|
[7] |
Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Canc Sci 2018; 109:513e22.
|
[8] |
Kamps R, Brandao RD, Bosch BJ, Paulussen AD, Xanthoulea S, Blok MJ, et al. Next-generation sequencing in oncology: Ge-netic diagnosis, risk prediction and cancer classification. Int J Mol Sci 2017;18:308. https://doi.org/10.3390/ijms18020308.
|
[9] |
Collins FS, Morgan M, Patrinos A. The Human Genome Project: Lessons from large-scale biology. Science 2003; 300:286e90.
|
[10] |
Medicare Cf, Services M. Decision memo for next generation sequencing (NGS) for Medicare beneficiaries with advanced cancer (CAG-00450N)2018. https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAIdZ290. [Accessed 1 September 2020].
|
[11] |
Akras Z, Bungo B, Leach BH, Marquard J, Ahluwalia M, Carraway H, et al. Primer on hereditary cancer predisposition genes included within somatic next-generation sequencing panels. JCO Precision Oncol 2019; 3:1e11.
|
[12] |
Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. Predicting recurrence and pro-gression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006;49. 466-465; discussion 475-7.
|
[13] |
Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R, et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol 2020; 77:420e33.
|
[14] |
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014; 507:315e22.
|
[15] |
Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499:214e8.
|
[16] |
National Cancer Institute. The cancer genome Atlas program. 2018. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/studied-cancers. [Accessed 1 September 2020].
|
[17] |
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characteriza-tion of muscle-invasive bladder cancer. Cell 2017;171:540e56. e25. https://doi.org/10.1016/j.cell.2017.09.007.
|
[18] |
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature 2013; 500:415e21.
|
[19] |
Duffy MJ, Synnott NC, O’Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Canc Biol 2020. https://doi.org/10.1016/j.semcancer.2020.07.005.S1044-579X(20)30160-7.
|
[20] |
Malats N, Bustos A, Nascimento CM, Fernandez F, Rivas M, Puente D, et al. P53 as a prognostic marker for bladder cancer: A meta-analysis and review. Lancet Oncol 2005; 6:678e86.
|
[21] |
Plimack ER, Dunbrack RL, Brennan TA, Andrake MD, Zhou Y, Serebriiskii IG, et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemo-therapy in muscle-invasive bladder cancer. Eur Urol 2015; 68:959e67.
|
[22] |
Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be tar-geted through inhibition of EZH2. Sci Transl Med 2017;9: eaai8312. https://doi.org/10.1126/scitranslmed.aai8312.
|
[23] |
Cooley LF, Glaser AP, Meeks JJ. Mutation signatures to Pan-Cancer Atlas: Investigation of the genomic landscape of muscle-invasive bladder cancer. Urol Oncol 2020;S1078-1439(20) 30041-7. https://doi.org/10.1016/j.urolonc.2020.01.019.
|
[24] |
Liu X, Zhang W, Geng D, He J, Zhao Y, Yu L. Clinical signifi-cance of fibroblast growth factor receptor-3 mutations in bladder cancer: A systematic review and meta-analysis. Genet Mol Res 2014; 13:1109e20.
|
[25] |
Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med 2019; 381:338e48.
|
[26] |
Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, Galsky MD, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1e3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alter-ations. Canc Discov 2018; 8:812e21.
|
[27] |
Ross JS, Wang K, Gay LM, Al-Rohil RN, Nazeer T, Sheehan CE, et al. A high frequency of activating extracellular domain ERBB2 (HER2) mutation in micropapillary urothelial carci-noma. Clin Canc Res 2014; 20:68e75.
|
[28] |
Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 2012;338:221 https://doi.org/10.1126/science.1226344.
|
[29] |
Milowsky MI, Iyer G, Regazzi AM, Al-Ahmadie H, Gerst SR, Ostrovnaya I, et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int 2013; 112:462e70.
|
[30] |
Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, Al-Ahmadie H, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Canc Dis-cov 2014; 4:1140e53.
|
[31] |
Groenendijk FH, de Jong J, Fransen van de Putte EE, Michaut M, Schlicker A, Peters D, et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol 2016; 69:384e8.
|
[32] |
Glaser AP, Fantini D, Shilatifard A, Schaeffer EM, Meeks JJ. The evolving genomic landscape of urothelial carcinoma. Nat Rev Urol 2017; 14:215e29.
|
[33] |
Glaser AP, Fantini D, Wang Y, Yu Y, Rimar KJ, Podojil JR, et al. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget 2018; 9:4537e48.
|
[34] |
Rink M, Furberg H, Zabor EC, Xylinas E, Babjuk M, Pycha A, et al. Impact of smoking and smoking cessation on oncologic outcomes in primary non-muscle-invasive bladder cancer. Eur Urol 2013; 63:724e32.
|
[35] |
Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Kwiatkowski DJ, et al. Somatic ERCC2 mutations are associ-ated with a distinct genomic signature in urothelial tumors. Nat Genet 2016; 48:600e6.
|
[36] |
Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al. Intrinsic subtypes of high-grade bladder cancer re?ect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 2014; 111:3110e5.
|
[37] |
Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Canc Cell 2014; 25:152e65.
|
[38] |
Sjodahl G, Lauss M, Lovgren K, Chebil G, Gudjonsson S, Veerla S, et al. A molecular taxonomy for urothelial carci-noma. Clin Canc Res 2012; 18:3377e86.
|
[39] |
Sjodahl G, Eriksson P, Liedberg F, Hoglund M. Molecular clas-sification of urothelial carcinoma: Global mRNA classification versus tumour-cell phenotype classification. J Pathol 2017; 242:113e25.
|
[40] |
Mo Q, Nikolos F, Chen F, Tramel Z, Lee YC, Hayashi K, et al. Prognostic power of a tumor differentiation gene signature for bladder urothelial carcinomas. J Natl Cancer Inst 2018; 110:448e59.
|
[41] |
Rebouissou S, Bernard-Pierrot I, de Reynies A, Lepage ML, Krucker C, Chapeaublanc E, et al. EGFR as a potential ther-apeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med 2014;6: 244ra291 https://doi.org/10.1126/scitranslmed.3008970.
|
[42] |
Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Canc Cell 2016; 30:27e42.
|
[43] |
Pietzak EJ, Bagrodia A, Cha EK, Drill EN, Iyer G, Isharwal S, et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur Urol 2017; 72:952e9.
|
[44] |
Alfred Witjes J, Lebret T, Comperat EM, Cowan NC, De Santis M, Bruins HM, et al. Updated 2016 EAU Guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol 2017; 71:462e75.
|
[45] |
Mazza P, Moran GW, Li G, Robins DJ, Matulay JT, Herr HW, et al. Conservative management following complete clinical response to neoadjuvant chemotherapy of muscle invasive bladder cancer: Contemporary outcomes of a multi-institutional cohort study. J Urol 2018; 200:1005e13.
|
[46] |
Robins D, Matulay J, Lipsky M, Meyer A, Ghandour R, DeCastro G, et al. Outcomes following clinical complete response to neoadjuvant chemotherapy for muscle-invasive urothelial carcinoma of the bladder in patients refusing radical cystectomy. Urology 2018; 111:116e21.
|
[47] |
Grossman HB, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 2003; 349:859e66.
|
[48] |
Yin M, Joshi M, Meijer RP, Glantz M, Holder S, Harvey HA, et al. Neoadjuvant chemotherapy for muscle-invasive bladder can-cer: A systematic review and two-step meta-analysis. Oncol 2016; 21:708e15.
|
[49] |
Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans 2018; 47:6645e53.
|
[50] |
Salminen AP, Montoya Perez I, Klén R, Ettala OO, Syva¨nen KT, Elo LL, et al. Adverse events during neoadjuvant chemo-therapy for muscle invasive bladder cancer. Bladder Cancer 2019; 5:273e9.
|
[51] |
Raj GV, Karavadia S, Schlomer B, Arriaga Y, Lotan Y, Sagalowsky A, et al. Contemporary use of perioperative cisplatin-based chemotherapy in patients with muscle-invasive bladder cancer. Cancer 2011; 117:276e82.
|
[52] |
Porter MP, Kerrigan MC, Donato BM, Ramsey SD. Patterns of use of systemic chemotherapy for Medicare beneficiaries with urothelial bladder cancer. Urol Oncol 2011; 29:252e8.
|
[53] |
Miron B, Hoffman-Censits JH, Anari F, O’Neill J, Geynisman DM, Zibelman MR, et al. Defects in DNA repair genes confer improved long-term survival after cisplatin-based neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol Oncol 2020; 3:544e7.
|
[54] |
Teo MY, Bambury RM, Zabor EC, Jordan E, Al-Ahmadie H, Boyd ME, et al. DNA damage response and repair gene alter-ations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin Canc Res 2017; 23:3610e8.
|
[55] |
Liu D, Plimack ER, Hoffman-Censits J, Garraway LA, Bellmunt J, Van Allen E, et al. Clinical validation of chemo-therapy response biomarker ERCC2 in muscle-invasive uro-thelial bladder carcinoma. JAMA Oncol 2016; 2:1094e6.
|
[56] |
Takata R, Katagiri T, Kanehira M, Tsunoda T, Shuin T, Miki T, et al. Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin Canc Res 2005; 11:2625e36.
|
[57] |
Takata R, Katagiri T, Kanehira M, Shuin T, Miki T, Namiki M, et al. Validation study of the prediction system for clinical response of M-VAC neoadjuvant chemotherapy. Canc Sci 2007; 98:113e7.
|
[58] |
Kakehi Y, Ozdemir E, Habuchi T, Yamabe H, Hashimura T, Katsura Y, et al. Absence of p53 overexpression and favorable response to cisplatin-based neoadjuvant chemotherapy in urothelial carcinomas. Jpn J Canc Res 1998; 89:214e20.
|
[59] |
McConkey DJ, Choi W, Shen Y, Lee IL, Porten S, Matin SF, et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naive urothelial cancer is predictive of clinical outcomes from neoadjuvant chemo-therapy: A phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur Urol 2016; 69:855e62.
|
[60] |
Hahn NM, Necchi A, Loriot Y, Powles T, Plimack ER, Sonpavde G, et al. Role of checkpoint inhibition in localized bladder cancer. Eur Urol Oncol 2018; 1:190e8.
|
[61] |
Necchi A, Anichini A, Raggi D, Briganti A, Massa S, Luciano R, et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): An open-label, single-arm, phase II study. J Clin Oncol 2018; 36:3353e60.
|
[62] |
Necchi A, Raggi D, Gallina A, Ross JS, Fare E, Giannatempo P, et al. Impact of molecular subtyping and immune infiltration on pathological response and outcome following neoadjuvant pembrolizumab in muscle-invasive bladder cancer. Eur Urol 2020; 77:701e10.
|
[63] |
Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in pa-tients with locally advanced and metastatic urothelial carci-noma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016; 387:1909e20.
|
[64] |
Powles T, Kockx M, Rodriguez-Vida A, Duran I, Crabb SJ, Van Der Heijden MS, et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat Med 2019; 25:1706e14.
|
[65] |
Sfakianos JP, Cha EK, Iyer G, Scott SN, Zabor EC, Shah RH, et al. Genomic characterization of upper tract urothelial carcinoma. Eur Urol 2015; 68:970e7.
|
[66] |
Hassler MR, Bray F, Catto JWF, Grollman AP, Hartmann A, Margulis V, et al. Molecular characterization of upper tract urothelial carcinoma in the era of next-generation sequencing: A systematic review of the current literature. Eur Urol 2020; 78:209e20.
|
[67] |
Moss TJ, Qi Y, Xi L, Peng B, Kim T-B, Ezzedine NE, et al. Comprehensive genomic characterization of upper tract uro-thelial carcinoma. Eur Urol 2017; 72:641e9.
|
[68] |
Audenet F, Isharwal S, Cha EK, Donoghue MTA, Drill EN, Ostrovnaya I, et al. Clonal relatedness and mutational dif-ferences between upper tract and bladder urothelial carci-noma. Clin Canc Res 2019; 25:967e76.
|
[69] |
Pal SK, Bajorin D, Dizman N, Hoffman-Censits J, Quinn DI, Petrylak DP, et al. Infigratinib in upper tract urothelial carci-noma versus urothelial carcinoma of the bladder and its as-sociation with comprehensive genomic profiling and/or cell-free DNA results. Cancer 2020; 126:2597e606.
|
[70] |
Necchi A, Pouessel D, Leibowitz-Amit R, Flechon A, Gupta S, Barthelemy P, et al. 900P-Interim results of FIGHT-201, a phase 2, open-label, multicenter study of INCB054828 in patients (PTS) with metastatic or surgically unresectable urothelial carcinoma (UC) harboring fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alteration (GA). Ann Oncol 2018;29: viii319e20. https://doi.org/10.1093/annonc/mdy283.109. 109.
|
[1] |
Francesco Claps,Maria Carmen Mir,Homayoun Zargar. Molecular markers of systemic therapy response in urothelial carcinoma[J]. Asian Journal of Urology, 2021, 8(4): 376-390. |
[2] |
Marcio Covas Moschovas,Kulthe Ramesh Seetharam Bhat,Cathy Jenson,Vipul R. Patel,Gabriel Ogaya-Pinies. Robtic-assisted radical cystectomy: Literature review[J]. Asian Journal of Urology, 2021, 8(1): 14-19. |
[3] |
Hugo Otaola-Arca,Rafael Coelho,Vipul R. Patel,Marcelo Orvieto. Totally intracorporeal robot-assisted urinary diversion for bladder cancer (Part 1). Review and detailed characterization of ileal conduit and modified Indiana pouch[J]. Asian Journal of Urology, 2021, 8(1): 50-62. |
[4] |
Hugo Otaola-Arca,Kulthe Ramesh Seetharam Bhat,Vipul R. Patel,Marcio Covas Moschovas,Marcelo Orvieto. Totally intracorporeal robot-assisted urinary diversion for bladder cancer (part 2). Review and detailed characterization of the existing intracorporeal orthotopic ileal neobladder[J]. Asian Journal of Urology, 2021, 8(1): 63-80. |
[5] |
Abhishek Tripathi,Shilpa Gupta. Androgen receptor in bladder cancer: A promising therapeutic target[J]. Asian Journal of Urology, 2020, 7(3): 284-290. |
[6] |
Weibin Xie,Junming Bi,Qiang Wei,Ping Han,Dongkui Song,Lei Shi,Dingwei Ye,Yijun Shen,Xin Gou,Weiyang He,Shaogang Wang,Zheng Liu,Jinhai Fan,Kaijie Wu,Zhiwen Chen,Xiaozhou Zhou,Chuize Kong,Yang Liu,Chunxiao Liu,Abai Xu,Baiye Jin,Guanghou Fu,Wei Xue,Haige Chen,Tiejun Pan,Zhong Tu,Tianxin Lin,Jian Huang. Survival after radical cystectomy for bladder cancer: Multicenter comparison between minimally invasive and open approaches[J]. Asian Journal of Urology, 2020, 7(3): 291-300. |
[7] |
Sunny Goel,Rahul J. Sinha,Ved Bhaskar,Ruchir Aeron,Ashish Sharma,Vishwajeet Singh. Role of gemcitabine and cisplatin as neoadjuvant chemotherapy in muscle invasive bladder cancer: Experience over the last decade[J]. Asian Journal of Urology, 2019, 6(3): 222-229. |
[8] |
Ka Wing Wong, Terence Chun-ting Lai, Ada Tsui-lin Ng, Brian Sze-ho Ho, James Hok-leung Tsu, Chiu Fung Tsang, W. K. Ma, Ming Kwong Yiu. Anterior perineal hernia after anterior exenteration[J]. Asian Journal of Urology, 2017, 4(4): 253-255. |
[9] |
Yu Guang Tan, Ernest Eu, Weber Lau Kam On, Hong Hong Huang. Pretreatment neutrophil-to-lymphocyte ratio predicts worse survival outcomes and advanced tumor staging in patients undergoing radical cystectomy for bladder cancer[J]. Asian Journal of Urology, 2017, 4(4): 239-246. |
[10] |
Zhiying Shao, Andrew Z. Wang, Daniel J. George, Tian Zhang. Novel immunotherapy approaches for metastatic urothelial and renal cell carcinoma[J]. Asian Journal of Urology, 2016, 3(4): 268-277. |
[11] |
David J. McConkey, Woonyoung Choi, Andrea Ochoa, Colin P. N. Dinney. Intrinsic subtypes and bladder cancer metastasis[J]. Asian Journal of Urology, 2016, 3(4): 260-267. |
[12] |
Takashi Kobayashi. Understanding the biology of urothelial cancer metastasis[J]. Asian Journal of Urology, 2016, 3(4): 211-222. |
[13] |
Victor C. Lin, Chung-hsien Chen, Allen W. Chiu, . Laparoscopic nephroureterectomy for upper tract urothelial carcinoma e Update[J]. Asian Journal of Urology, 2016, 3(3): 115-119. |
[14] |
Thomas Y. Hsueh, Allen W. Chiu. Narrow band imaging for bladder cancer[J]. Asian Journal of Urology, 2016, 3(3): 126-129. |
[15] |
Wei Wang, Haitao Liu, Shujie Xia. Thulium laser treatment for bladder cancer[J]. Asian Journal of Urology, 2016, 3(3): 130-133. |
|
|
|
|