|
|
Robotic renal and adrenal oncologic surgery: A contemporary review |
Kulthe Ramesh Seetharam Bhata,*(),Marcio Covas Moschovasa,Fikret Fatih Onola,Travis Rogersa,Shannon Roofa,Vipul R. Patela,Oscar Schatloffa,b
|
a Global Robotics Institute, AdventHealth Celebration Health, Celebration, FL, USA b Sudmedica Health, Chile |
|
|
Abstract Robot-assisted surgery has evolved over time. Radical nephrectomy with inferior vena cava thrombectomy is feasible and safe for level I, II and III thrombus in high volume centers. Though it is feasible for level IV thrombus, this procedure needs a multi-departmental co-operation. However, the safety of robot-assisted procedures in this subset is still unknown. Robot-assisted partial nephrectomy has been universally approved and found oncologically safe. Robotic adrenalectomy has been increasingly utilized for select cases, especially in bilateral tumors and for retroperitoneal adrenalectomy.
|
Received: 22 December 2019
Available online: 20 January 2021
|
Corresponding Authors:
Kulthe Ramesh Seetharam Bhat
E-mail: seetharam_bhat2003@yahoo.co.in;bhat.seetharam@gmail.com
|
|
|
Study | Objective | Results | Lane et al., 2011 [18] | Determine predictors of new baseline GFR after PN. | Percentage of parenchyma spared during PN and preoperative GFR predicted functional outcomes. Ischemia time was not a significant predictor. | Thompson et al., 2012 [19] | Evaluate the effects of WIT and parenchymal mass preservation during PN. | Percent GFR preserved and preoperative GFR were associated with new-onset stage IV CKD. WIT >25 min was also associated with new-onset CKD. | Song et al., 2011 [20] | Assess change in ipsilateral renal function after lap PN. | Percentage of parenchymal volume reduction and preoperative GFR were associated with predictors of functional outcomes. WIT was not a significant predictor of postoperative renal function. | Mir et al., 2015 [21] | Assess the effect of ischemia and parenchymal preservation on post-PN renal function. | Postoperative GFR preserved was most strongly associated with parenchymal volume saved; ischemia time did not correlate with preserved GFR. | Ginzburg et al., 2015 [22] | Evaluate the contribution of parenchymal preservation ischemia to functional outcomes. | Preoperative GFR and volume preservation were associated with GFR preservation. WIT was not a significant predictor. |
|
Predictors of GFR preservation after PN.
|
Authors | Level of thrombus | Approach | Findings | Conclusion | Abaza, 2011 [46] | II thrombus | Laparoscopic | 5 patients EBL-170 mL Mean OR-327 min Mean hospital stay-1.2 day | - Initial series - Feasibility - Safety | Aghazadeh and Goh, 2018 [48] | II thrombus | Supine Side dock technique | EBL-500 mL OR time-7 h Discharge time-5 day | - Feasibility of new technique | Gill et al., 2015 [47] | II and III thrombus | Inferior vena cava first and kidney last approach | 16 procedures Level III-9 Mean tumor size-8.5 cm Mean thrombus length-5.7 cm Median OR time-4.9 h EBL-375 mL | - Feasibility - Safety of level III thrombus | Wang et al., 2016 [50] | II-III thrombus | Described different techniques for the left and right sides | Mean OR time Right-131 min Left-250 min Estimated blood loss-240 mL Median IVC clamp time-17 min | - Safe - Feasible | Abaza et al., 2016 [53] | II and III thrombus | Multi-institutional study 32 cases and 9 surgeons | Mean tumor size-9.6 cm Mean thrombi length-1 to 11 cm Mean operative time-292 min Mean blood loss-399 mL 24 lymphadenectomy 7 distal recurrence-154 follow-up | - Feasible - Safe | Palma-Zamora et al., 2018 [54] | IV thrombus | Initial open assistance followed by completion nephrectomy and IVC thrombectomy | CPB-60 min Circulatory arrest-25 min | Proof of concept and safety | Chopra et al., 2017 [40] | II and III thormbus | IVC-first, “kidney-last” technique | OR time-270 min Median hospital stay-4 day | - Detailed description - Feasibility | Wang et al., 2020 [55] | III-IV thrombus | Level III-IV thrombus | Mean OR time-465 min EBL-2000 mL CPB-72 min Perioperative death-1 Vascular injury-2 | - Feasible - Multidisciplinary cooperation |
|
Contemporary outcomes of robot-assisted radical nephrectomy with IVC thrombectomy (n≥5 cases).
|
Studies | LA vs. RA | Operative time LA vs. RA (min) | Estimated blood loss LA vs. RA (mL) | Perioperative complications LA vs. RA | Length of hospital stay LA vs. RA (day) | Miscellaneous | Morino et al., 2004 [73] | 59 vs. 50 Prospective randomised control trial | 115.3 vs.169.2 (p<0.001) | NA | 4 robotic cases were converted to laparoscopy | 5.7 vs. 5.4 (p<0.01) | $2 737 vs. $3 467 (p<0.01) | Agacaoglu et al., 2012 [64] | 31 vs. 21 | 163.2 vs. 165.7 (p=0.43) | 25.3 vs. 35.6 (p=0.24) | None | | | Agacaoglu et al., 2012 [76] | 38 vs. 25 | 187.2 vs. 159.4 (p=0.043) | 166.6 vs. 83.6 (p=0.147) | 2.7% vs. 0% (30-day morbidity) | 1.9 vs. 1.4 (p=0.009) | | Karabulut et al., 2012 [62] | 32 vs. 18 | 165 vs. 160 (p=0.8) | 41 vs. 41 | 5 vs. 1 (p=0.2) | 1.5 vs. 1.1 (p=0.006) | | Aksoy et al., 2013 [67] | 57 vs. 42 | 187.3 vs. 186.1 (p=0.94) | 76.6 vs. 50.3 (p=0.06) | Conversion to open was 0% in robotic and 5.2% in Laparoscopic (p=0.06) | 1.3±0.1 vs. 1.6±0.1 (p=0.06) | | Aliyev et al., 2013 [65], | 42 vs. 26 | 178 vs. 149 (p=0.132) | 43 vs. 35 (p=0.628) | Morbidity 10% vs. 0% (p=0.041) | Admission more than 1 day (14 vs. 3) (p=0.020) | | Rafaelli et al., 2014 [77] | 5 (TL-BilA vs. 11 PR-BilA vs. 13 RA-BilA) | 157.4 vs. 256 vs. 221 (p<0.001) | | Postoperative complication rate 2 vs. 3 vs. 0 (p=0.397) | 12.0 vs. 10.8 vs. 4.4 (p<0.001) | | You et al., 2013 [71] | 31 vs. 15 | 181.13 vs. 208.20 | | | 6.71 vs. 5.86 | | Tang et al., 2015 [75] | Meta-analysis of 8 trials | Significant difference in OR time, LA>RA (WMD=17.52, p=0.01) | Significantly less blood loss in RA (WMD=-19 mL, p=0.02) | | RA has significantly shorter hospital stay (WMD=-0.35, p<0.001) | | Economopoulos et al., 2017 [74] | Systematic review and meta-analysis of 27 studies | 162.4 vs. 171.8 (p=0.001) | 74.8 vs. 45.7 (p=0.612) | 9.8 vs. 6.8 (p=0.646) | 2.88 vs. 2.38 (p<0.001) | | Feng et al., 2018 [78] | 64 vs. 58 | 129.1 vs. 124.4 (p=0.5) | 24.1 vs. 22.4 (p=0.10) | | 1.9 vs. 1.7 (p=0.18) | $3 430 vs. $3 527 (p=0.59) |
|
Comparison between laparoscopic vs. robotic adrenalectomy.
|
[1] |
Van Poppel H, Da Pozzo L, Albrecht W, Matveev V, Bono A, Borkowski A, et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011; 59:543-52.
|
[2] |
Scosyrev E, Messing EM, Sylvester R, Campbell S, Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 2014; 65:372-7.
|
[3] |
Hung AJ, Cai J, Simmons MN, Gill IS. “Trifecta” in partial nephrectomy. J Urol 2013; 189:36-42.
|
[4] |
Brassetti A, Anceschi U, Bertolo R, Ferriero M, Tuderti G, Capitanio U, et al. Surgical quality, cancer control and functional preservation: introducing a novel trifecta for robotassisted partial nephrectomy. Minerva Urol Nefrol 2020; 72:82-90.
|
[5] |
Mehra K, Manikandan R, Dorairajan LN, Sreerag S, Jain A, Bokka SH. Trifecta outcomes in open, laparoscopy or robotic partial nephrectomy: does the surgical approach matter? J Kidney Cancer VHL 2019; 6:8-12.
|
[6] |
Kutikov A, Uzzo RG. The R.E.N.A.L. Nephrometry Score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol 2009; 182:844-53.
|
[7] |
Ficarra V, Novara G, Secco S, Macchi V, Porzionato A, De Caro R, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol 2009; 56:786-93.
|
[8] |
Veccia A, Antonelli A, Uzzo RG, Novara G, Kutikov A, Ficarra V, et al. Predictive value of nephrometry scores in nephronsparing surgery: a systematic review and meta-analysis. Eur Urol Focus 2020; 6:490-504.
|
[9] |
Schiavina R, Novara G, Borghesi M, Ficarra V, Ahlawat R, Moon DA, et al. PADUA and R.E.N.A.L. nephrometry scores correlate with perioperative outcomes of robot-assisted partial nephrectomy: analysis of the Vattikuti Global Quality Initiative in Robotic Urologic Surgery (GQI-RUS) database. BJU Int 2017; 119:456-63.
|
[10] |
Harke NN, Mandel P, Witt JH, Wagner C, Panic A, Boy A, et al. Are there limits of robotic partial nephrectomy? TRIFECTA outcomes of open and robotic partial nephrectomy for completely endophytic renal tumors. J Surg Oncol 2018; 118:206-11.
|
[11] |
Simone G, Tuderti G, Anceschi U, Ferriero M, Costantini M, Minisola F, et al. “Ride the green light”: indocyanine greenmarked off-clamp robotic partial nephrectomy for totally endophytic renal masses. Eur Urol 2019; 75:1008-14.
|
[12] |
Yerram NK, Dagenais J, Bryk DJ, Nandanan N, Maurice MJ, Mouracade P, et al. Trifecta outcomes in multifocal tumors: a comparison between robotic and open partial nephrectomy. J Endourol 2019; 32:615-20.
|
[13] |
Kim JK, Lee H, Oh JJ, Lee S, Hong SK, Lee SE, et al. Comparison of robotic and open partial nephrectomy for highly complex renal tumors (RENAL nephrometry score 10). PloS One 2019; 14:e0210413. https://doi.org/10.1371/journal.pone.0210413.
pmid: 30629644
|
[14] |
Sagalovich D, Dagenais J, Bertolo R, Garisto JD, Kaouk JH. Trifecta Outcomes in Renal Hilar Tumors: a comparison between robotic and open partial nephrectomy. J Endourol 2018; 32:831-6.
|
[15] |
Malkoc E, Ramirez D, Kara O, Maurice MJ, Nelson RJ, Caputo PA, et al. Robotic and open partial nephrectomy for localized renal tumors larger than 7 cm: a single-center experience. World J Urol 2017; 35:781-7.
|
[16] |
Simone G, Tuderti G, Anceschi U, Papalia R, Ferriero M, Misuraca L, et al. Oncological outcomes of minimally invasive partial versus minimally invasive radical nephrectomy for cT1- 2/N0/M0 clear cell renal cell carcinoma: a propensity scorematched analysis. World J Urol 2017; 35:789-94.
|
[17] |
Mir MC, Derweesh I, Porpiglia F, Zargar H, Mottrie A, Autorino R. Partial nephrectomy versus radical nephrectomy for clinical T1b and T2 renal tumors: a systematic review and meta-analysis of comparative studies. Eur Urol 2017; 71:606-17.
|
[18] |
Lane BR, Russo P, Uzzo RG, Hernandez AV, Boorjian SA, Thompson RH, et al. Comparison of cold and warm ischemia during partial nephrectomy in 660 solitary kidneys reveals predominant role of nonmodifiable factors in determining ultimate renal function. J Urol 2011; 185:421-7.
|
[19] |
Thompson RH, Lane BR, Lohse CM, Leibovich BC, Fergany A, Frank I, et al. Renal function after partial nephrectomy: effect of warm ischemia relative to quantity and quality of preserved kidney. Urology 2012; 79:356-60.
|
[20] |
Song C, Park S, Jeong IG, Hong JH, Park HK, Kim CS, et al. Followup of unilateral renal function after laparoscopic partial nephrectomy. J Urol 2011; 186:53-8.
|
[21] |
Mir MC, Ercole C, Takagi T, Zhang Z, Velet L, Remer EM, et al. Decline in renal function after partial nephrectomy: etiology and prevention. J Urol 2015; 193:1889-98.
|
[22] |
Ginzburg S, Uzzo R, Walton J, Miller C, Kurz D, Li T, et al. Residual parenchymal volume, not warm ischemia time, predicts ultimate renal functional outcomes in patients undergoing partial nephrectomy. Urology 2015; 86:300-6.
|
[23] |
Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351:1296-305.
|
[24] |
Huang WC, Levey AS, Serio AM, Snyder M, Vickers AJ, Raj GV, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006; 7:735-40.
|
[25] |
Lane BR, Campbell SC, Demirjian S, Fergany AF. Surgically induced chronic kidney disease may be associated with a lower risk of progression and mortality than medical chronic kidney disease. J Urol 2013; 189:1649-55.
|
[26] |
Zhang Z, Zhao J, Velet L, Ercole CE, Remer EM, Mir CM, et al. Functional recovery from extended warm ischemia associated with partial nephrectomy. Urology 2016; 87:106-13.
|
[27] |
Greco F, Autorino R, Altieri V, Campbell S, Ficarra V, Gill I, et al. Ischemia techniques in nephron-sparing surgery: a systematic review and meta-analysis of surgical, oncological, and functional outcomes. Eur Urol 2019; 75:477-91.
|
[28] |
Lane BR, Babineau DC, Poggio ED, Weight CJ, Larson BT, Gill IS, et al. Factors predicting renal functional outcome after partial nephrectomy. J Urol 2008; 180:2363-9.
|
[29] |
Thompson RH, Frank I, Lohse CM, Saad IR, Fergany A, Zincke H, et al. The impact of ischemia time during open nephron sparing surgery on solitary kidneys: a multiinstitutional study. J Urol 2007; 177:471-6.
|
[30] |
Thompson RH, Lane BR, Lohse CM, Leibovich BC, Fergany A, Frank I, et al. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol 2010; 58:340-5.
|
[31] |
Dong W, Wu J, Suk-Ouichai C, Caraballo Antonio E, Remer EM, Li J, et al. Ischemia and functional recovery from partial nephrectomy: refined perspectives. Eur Urol Focus 2018; 4:572-8.
|
[32] |
Parekh DJ, Weinberg JM, Ercole B, Torkko KC, Hilton W, Bennett M, et al. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol 2013; 24:506-17.
|
[33] |
Lardas M, Stewart F, Scrimgeour D, Hofmann F, Marconi L, Dabestani S, et al. Systematic review of surgical management of nonmetastatic renal cell carcinoma with vena caval thrombus. Eur Urol 2016; 70:265-80.
|
[34] |
Gu L, Ma X, Gao Y, Li H, Li X, Chen L, et al. Robotic versus open level I-II inferior vena cava thrombectomy: a matched group comparative analysis. J Urol 2017; 198:1351-2.
|
[35] |
Davila V, Rose K, Peng K, Meltzer A, Stone W, Money S, et al. Comparison of open versus robotic nephrectomy and inferior vena cava reconstruction for renal cell carcinoma with inferior vena cava tumor thrombus. J Vasc Surg Venous Lymphat Disord 2019; 7:302. https://doi.org/10.1016/j.jvsv.2019.01.039.
|
[36] |
Zhang K, Zhu G, Liu X, Tian J, Gu Y, Zhai M, et al. Robotassisted laparoscopic retroperitoneal lymph node dissection with concomitant inferior vena cava thrombectomy for metastatic mixed testicular germ cell cancer: a case report. J Med Case Rep 2019; 13:272. https://doi.org/10.1186/s13256-019-2200-y.
doi: 10.1186/s13256-019-2200-y
pmid: 31451109
|
[37] |
Oto A, Herts BR, Remer EM, Novick AC. Inferior vena cava tumor thrombus in renal cell carcinoma: staging by MR imaging and impact on surgical treatment. Am J Roentgenol 1998; 171:1619-24.
|
[38] |
Guo H, Song Y, Na Y. Value of abdominal ultrasound scan, CT and MRI for diagnosing inferior vena cava tumour thrombus in renal cell carcinoma. Chin Med J 2009; 122:2299-302.
|
[39] |
Lawindy SM, Kurian T, Kim T, Mangar D, Armstrong PA, Alsina AE, et al. Important surgical considerations in the management of renal cell carcinoma (RCC) with inferior vena cava (IVC) tumour thrombus. BJU Int 2012; 110:926-39.
|
[40] |
Chopra S, Simone G, Metcalfe C, de Castro Abreu AL, Nabhani J, Ferriero M, et al. Robot-assisted level IIeIII inferior vena cava tumor thrombectomy: step-by-step technique and 1-year outcomes. Eur Urol 2017; 72:267-74.
|
[41] |
Alayed A, Krishna S, Breau RH, Currin S, Flood TA, Narayanasamy S, et al. Diagnostic accuracy of MRI for detecting inferior vena cava wall invasion in renal cell carcinoma tumor thrombus using quantitative and subjective analysis. Am J Roentgenol 2019; 212:562-9.
|
[42] |
Subramanian VS, Stephenson AJ, Goldfarb DA, Fergany AF, Novick AC, Krishnamurthi V. Utility of preoperative renal artery embolization for management of renal tumors with inferior vena caval thrombi. Urology 2009; 74:154-9.
|
[43] |
Chan AA, Abel EJ, Carrasco A, Zainfeld DE, Ifokwe JI, Vaporciyan AA, et al. 1764 Impact of preoperative renal artery embolization on surgical outcomes and overall survival in patients with renal cell carcinoma and inferior vena cava thrombus. J Urol 2011; 185:e707-8. https://doi.org/10.1016/j.juro.2011.02.2092.
|
[44] |
Tang Q, Li X, Song Y, Wang J, He Z, Zhou L. 938 Application of preoperative renal artery embolization in patients with renal cell carcinoma and venous tumor thrombus: an effective preoperative adjuvant therapy for patients with advanced tumor thrombus. Eur Urol Suppl 2014; 13:e938. https://doi.org/10.1016/S1569-9056(14)60922-2.
|
[45] |
May M, Brookman-Amissah S, Pflanz S, Roigas J, Hoschke B, Kendel F. Pre-operative renal arterial embolisation does not provide survival benefit in patients with radical nephrectomy for renal cell carcinoma. Br J Radiol 2009; 82:724-31.
|
[46] |
Abaza R. Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol 2011; 59:652-6.
|
[47] |
Gill IS, Metcalfe C, Abreu A, Duddalwar V, Chopra S, Cunningham M, et al. Robotic level III inferior vena cava tumor thrombectomy: initial series. J Urol 2015; 194:929-38.
|
[48] |
Aghazadeh MA, Goh AC. Robotic left-sided level II caval thrombectomy and nephrectomy using a novel supine, singledock approach: Primary description. Urology 2018; 112:205-8.
|
[49] |
Kundavaram C, de Abreu ALC, Chopra S, Simone G, Sotelo R, Aron M, et al. Advances in robotic vena cava tumor thrombectomy: intracaval balloon occlusion, patch grafting, and vena cavoscopy. Eur Urol 2016; 70:884-90.
|
[50] |
Wang B, Li H, Ma X, Zhang X, Gu L, Li X, et al. Robot-assisted laparoscopic inferior vena cava thrombectomy: different sides require different techniques. Eur Urol 2016; 69:1112-9.
|
[51] |
Rogers CG, Linehan WM, Pinto PA. Robotic nephrectomy for kidney cancer in a horseshoe kidney with renal vein tumor thrombus: novel technique for thrombectomy. J Endourol 2008; 22:1561-3.
|
[52] |
Abreu AL, Azhar R, Chopra S, Berger A, Leslie S, Marien A, et al. V7-02 Robotic level 3 cava thrombectomy. J Urol 2014; 191. https://doi.org/10.1016/j.juro.2014.02.2032.
pmid: 25280308
|
[53] |
Abaza R, Shabsigh A, Castle E, Allaf M, Hu JC, Rogers C, et al. Multi-institutional experience with robotic nephrectomy with inferior vena cava tumor thrombectomy. J Urol 2016; 195:865-71.
|
[54] |
Palma-Zamora I, Dalela D, Barod R, Hsu L, Menon M, Rogers CG. Initial robotic assistance in the surgical management of renal cell carcinoma with level 4 cavoatrial thrombus. J Robot Surg 2018; 12:737-40.
|
[55] |
Wang B, Huang Q, Liu K, Fan Y, Peng C, Gu L, et al. Robotassisted level III-IV inferior vena cava thrombectomy: initial series with step-by-step procedures and 1-yr outcomes. Eur Urol 2020; 78:77-86.
|
[56] |
Thornton JK. Abdominal nephrectomy for large sarcoma of the left suprarenal capsule: recovery. Trans Clin Soc Lond 1890; 23:150-3.
|
[57] |
Gagner M, Lacroix A, Bolté E. Laparoscopic adrenalectomy in Cushing's syndrome and pheochromocytoma. N Engl J Med 1992; 327:1033.
doi: 10.1056/NEJM199210013271417
pmid: 1387700
|
[58] |
Piazza L, Caragliano P, Scardilli M, Sgroi AV, Marino G, Giannone G. Laparoscopic robot-assisted right adrenalectomy and left ovariectomy (case reports). Chir Ital 1999; 51:465-6.
|
[59] |
NIH state-of-the-science statement on management of the clinically inapparent adrenal mass (“incidentaloma”). In: NIH consensus and state-of-the-science statements; 2002. p. 1-25.
|
[60] |
Murphy MM, Witkowski ER, Ng SC, McDade TP, Hill JS, Larkin AC, et al. Trends in adrenalectomy: a recent national review. Surg Endosc 2010; 24:2518-26.
|
[61] |
Brunaud L, Bresler L, Ayav A, Zarnegar R, Raphoz AL, Levan T, et al. Robotic-assisted adrenalectomy: what advantages compared to lateral transperitoneal laparoscopic adrenalectomy? Am J Surg 2008; 195:433-8.
|
[62] |
Karabulut K, Agcaoglu O, Aliyev S, Siperstein A, Berber E. Comparison of intraoperative time use and perioperative outcomes for robotic versus laparoscopic adrenalectomy. Surgery 2012; 151:537-42.
|
[63] |
Niglio A, Grasso M, Costigliola L, Zenone P, De Palma M. Laparoscopic and robot-assisted transperitoneal lateral adrenalectomy: a large clinical series from a single center. Updates Surg 2020; 72:193-8.
|
[64] |
Agcaoglu O, Aliyev S, Karabulut K, Siperstein A, Berber E. Robotic vs. laparoscopic posterior retroperitoneal adrenalectomy. Arch Surg 2012; 147:272-5.
|
[65] |
Aliyev S, Karabulut K, Agcaoglu O, Wolf K, Mitchell J, Siperstein A, et al. Robotic versus laparoscopic adrenalectomy for pheochromocytoma. Ann Surg Oncol 2013; 20:4190-4.
|
[66] |
Pineda-Solís K, Medina-Franco H, Heslin MJ. Robotic versus laparoscopic adrenalectomy: a comparative study in a highvolume center. Surg Endosc 2013; 27:599-602.
|
[67] |
Aksoy E, Taskin HE, Aliyev S, Mitchell J, Siperstein A, Berber E. Robotic versus laparoscopic adrenalectomy in obese patients. Surg Endosc 2013; 27:1233-6.
|
[68] |
Brandao LF, Autorino R, Laydner H, Haber GP, Ouzaid I, De Sio M, et al. Robotic versus laparoscopic adrenalectomy: a systematic review and meta-analysis. Eur Urol 2014; 65:154-61.
|
[69] |
Lairmore TC, Folek J, Govednik CM, Snyder SK. Improving minimally invasive adrenalectomy: selection of optimal approach and comparison of outcomes. World J Surg 2019; 40:1625-31.
|
[70] |
Pavan N, Autorino R, Lee H, Porpiglia F, Sun Y, Greco F, et al. Impact of novel techniques on minimally invasive adrenal surgery: trends and outcomes from a contemporary international large series in urology. World J Urol 2016; 34:1473-9.
|
[71] |
You JY, Lee HY, Son GS, Lee JB, Bae JW, Kim HY. Comparison of robotic adrenalectomy with traditional laparoscopic adrenalectomy with a lateral transperitoneal approach: a singlesurgeon experience. Int J Med Robot Comput Assist Surg 2013; 9:345-50.
|
[72] |
Samreen S, Fluck M, Hunsinger M, Wild J, Shabahang M, Blansfield JA. Laparoscopic versus robotic adrenalectomy: a review of the national inpatient sample. J Robot Surg 2019; 13:69-75.
|
[73] |
Morino M, Benincà G, Giraudo G, Del Genio GM, Rebecchi F, Garrone C. Robot-assisted vs. laparoscopic adrenalectomy: a prospective randomized controlled trial. Surg Endosc Other Interv Tech 2004; 18:1742-6.
|
[74] |
Economopoulos KP, Mylonas KS, Stamou AA, Theocharidis V, Sergentanis TN, Psaltopoulou T, et al. Laparoscopic versus robotic adrenalectomy: a comprehensive meta-analysis. Int J Surg 2017; 38:95-104.
|
[75] |
Tang K, Li H, Xia D, Yu G, Guo X, Guan W, et al. Robot-assisted versus laparoscopic adrenalectomy: a systematic review and meta-analysis. J Laparoendosc Adv Surg Tech 2015; 25:187-95.
|
[76] |
Agcaoglu O, Aliyev S, Karabulut K, Mitchell J, Siperstein A, Berber E. Robotic versus laparoscopic resection of large adrenal tumors. Ann Surg Oncol 2012; 19:2288-94.
|
[77] |
Raffaelli M, Brunaud L, De Crea C, Hoche G, Oragano L, Bresler L, et al. Synchronous bilateral adrenalectomy for cushing’s syndrome: laparoscopic versus posterior retroperitoneoscopic versus robotic approach. World J Surg 2014; 38:709-15.
|
[78] |
Feng Z, Feng MP, Feng DP, Rice MJ, Solórzano CC. A costconscious approach to robotic adrenalectomy. J Robot Surg 2018; 12:607-11.
|
[79] |
Feng Z, Feng MP, Feng DP, Solórzano CC. Robotic-assisted adrenalectomy using da Vinci Xi vs. Si: are there differences? J Robot Surg 2020; 14:349-55.
|
[80] |
Nomine-Criqui C, Germain A, Ayav A, Bresler L, Brunaud L. Robot-assisted adrenalectomy: indications and drawbacks. Updates Surg 2017; 69:127-33.
|
[81] |
Brunaud L, Ayav A, Zarnegar R, Rouers A, Klein M, Boissel P, et al. Prospective evaluation of 100 robotic-assisted unilateral adrenalectomies. Surgery 2008; 144:995-1001.
|
[82] |
Stefanidis D, Goldfarb M, Kercher KW, Hope WW, Richardson W, Fanelli RD, et al. SAGES guidelines for minimally invasive treatment of adrenal pathology. Surg Endosc 2013; 27:3960-80.
|
[83] |
Morris LF, Perrier ND. Advances in robotic adrenalectomy. Curr Opin Oncol 2012; 24:1-6.
|
[84] |
Walz MK, Alesina PF, Wenger FA, Deligiannis A, Szuczik E, Petersenn S, et al. Posterior retroperitoneoscopic adrenalectomy-results of 560 procedures in 520 patients. Surgery 2006; 140:943-50.
|
[85] |
Ludwig AT, Wagner KR, Lowry PS, Papaconstantinou HT, Lairmore TC. Robot-assisted posterior retroperitoneoscopic adrenalectomy. J Endourol 2010; 24:1307-14.
|
[86] |
Berber E, Mitchell J, Milas M, Siperstein A. Robotic posterior retroperitoneal adrenalectomy: operative technique. Arch Surg 2010; 145:781-4.
|
[87] |
Kahramangil B, Berber E. Comparison of posterior retroperitoneal and transabdominal lateral approaches in robotic adrenalectomy: an analysis of 200 cases. Surg Endosc 2018; 32:1984-9.
|
[88] |
Boris RS, Gupta G, Linehan WM, Pinto PA, Bratslavsky G. Robot-assisted laparoscopic partial adrenalectomy: initial experience. Urology 2011; 77:775-80.
|
[89] |
Asher KP, Gupta GN, Boris RS, Pinto PA, Linehan WM, Bratslavsky G. Robot-assisted laparoscopic partial adrenalectomy for pheochromocytoma: the National Cancer Institute technique. Eur Urol 2011; 60:118-24.
|
[90] |
Kumar A, Hyams ES, Stifelman MD. Robot-assisted partial adrenalectomy for isolated adrenal metastasis. J Endourol 2009; 23:651-4.
|
[91] |
Simone G, Anceschi U, Tuderti G, Misuraca L, Celia A, De Concilio B, et al. Robot-assisted partial adrenalectomy for the treatment of Conn’s syndrome: surgical technique, and perioperative and functional outcomes. Eur Urol 2019; 75:811-6.
|
[92] |
Zafar SS, Abaza R. Robot-assisted laparoscopic adrenalectomy for adrenocortical carcinoma: initial report and review of the literature. J Endourol 2008; 22:985-90.
|
[93] |
Fiori C, Checcucci E, Amparore D, Cattaneo G, Manfredi M, Porpiglia F. Adrenal tumours. Curr Opin Oncol 2019; 32:27-34.
|
[94] |
Zheng G, Li H, Deng J, Zhang X, Wu X. Open adrenalectomy versus laparoscopic adrenalectomy for adrenocortical carcinoma: a retrospective comparative study on short-term oncologic prognosis. Onco Targets Ther 2018; 11:1625-32.
|
[95] |
Wu K, Liu Z, Liang J, Tang Y, Zou Z, Zhou C, et al. Laparoscopic versus open adrenalectomy for localized (stage 1/2) adrenocortical carcinoma: experience at a single. high-volumecenter. Surg (United States) 2018; 164:1325-9.
|
[96] |
ElHaddad A, Castellani C, Sorantin E, Benesch M, Kampelmühler E, Singer G, et al. Minimally invasive surgery for pediatric adrenal massesdreport on four cases. Eur J Pediatr Surg Rep 2019; 7:e75-8. http://www.thieme-connect.de/DOI/DOI?10.1055/s-0039-1694058.
|
[1] |
Yucong Zhang,Gongwei Long,Haojie Shang,Beichen Ding,Guoliang Sun,Wei Ouyang,Man Liu,Yuan Chen,Heng Li,Hua Xu,Zhangqun Ye. Comparison of the oncological, perioperative and functional outcomes of partial nephrectomy versus radical nephrectomy for clinical T1b renal cell carcinoma: A systematic review and meta-analysis of retrospective studies[J]. Asian Journal of Urology, 2021, 8(1): 117-125. |
[2] |
Yoichiro Tohi,Shiori Murata,Noriyuki Makita,Issei Suzuki,Masashi Kubota,Yoshio Sugino,Koji Inoue,Hiroyuki Ueda,Mutsushi Kawakita. Absence of asymptomatic unruptured renal artery pseudoaneurysm on contrast-enhanced computed tomography after robot-assisted partial nephrectomy without parenchymal renorrhaphy[J]. Asian Journal of Urology, 2020, 7(1): 24-28. |
[3] |
Amit Sharma, Mukund Andankar, Hemant Pathak. A rare presentation of cystic nephroma in a young adult[J]. Asian Journal of Urology, 2017, 4(2): 128-130. |
|
|
|
|