|
|
Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer |
Ramesh Narayanan()
|
Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA |
|
|
Abstract Prostate cancer (PCa) accounted for over 300 000 deaths world-wide in 2018. Most of the PCa deaths occurred due to the aggressive castration-resistant PCa (CRPC). Since the androgen receptor (AR) and its ligands contribute to the continued growth of androgen-dependent PCa (ADPCa) and CRPC, AR has become a well-characterized and pivotal therapeutic-target. Although AR signaling was identified as therapeutic-target in PCa over five-decades ago, there remains several practical issues such as lack of antagonist-bound AR crystal structure, stabilization of the AR in the presence of agonists due to N-terminus and C-terminus interaction, unfavorable large-molecule accommodation of the ligand-binding domain (LBD), and generation of AR splice variants that lack the LBD that impede the discovery of highly potent fail-safe drugs. This review summarizes the AR-signaling pathway targeted therapeutics currently used in PCa and the approaches that could be used in future AR-targeted drug development of potent next-generation molecules. The review also outlines the discovery of molecules that bind to domains other than the LBD and those that inhibit both the full length and splice variant of ARs.
|
Received: 29 March 2019
Available online: 20 July 2020
|
About author:: E-mail address: rnaraya4@uthsc.edu. Peer review under responsibility of Second Military Medical University. |
|
|
|
Hormone-synthesis pathway and various targets that are currently used or considered to inhibit prostate cancer growth. Clinically cyp-17 enzymes, 5-α reductase, and AR are validated as therapeutic targets and drugs targeting them are available. Preclinically HSDs have been validated, but yet to be extensively tested in the clinic. AR, androgen receptor; DHEA, dihydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; DHT, dihydrotestosterone; HSD, hydroxysteroid dehydrogenase.
|
|
AR antagonists screening paradigm. AR, androgen receptor; GR, glucocorticoid receptor; HLM, human liver microsome; LBD, ligand binding domain; MLM, mouse liver microsome; PCa, prostate cancer; MR, mineralocorticoid receptor; PR, progesterone receptor.
|
|
Structures of known AR antagonists that are in the clinical and preclinical stages. AR, androgen receptor.
|
|
Screening assays to discover molecules to domains other than the LBD. AR, androgen receptor; LBD, ligand binding domain.
|
[1] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394-424.
|
[2] |
Brawley OW. Trends in prostate cancer in the United States. J Natl Cancer Inst Monogr 2012; 2012:152-6.
|
[3] |
Cooperberg MR, Cowan J, Broering JM, Carroll PR. High-risk prostate cancer in the United States, 1990-2007. World J Urol 2008; 26:211-8.
|
[4] |
Huggins C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann Surg 1942; 115:1192-200.
|
[5] |
Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 1974; 111:58-64.
|
[6] |
Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi C, et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 2016; 69:428-35.
|
[7] |
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Canc Cell 2010; 18:11-22.
|
[8] |
Zaffuto E, Pompe R, Zanaty M, Bondarenko HD, Leyh- Bannurah SR, Moschini M, et al. Contemporary incidence and cancer control outcomes of primary neuroendocrine prostate cancer: a SEER database analysis. Clin Genitourin Canc 2017. 15. e793-800. https://doi.org/10.1016/j.clgc.2017.04.006.
|
[9] |
Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45:586-92.
|
[10] |
Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol 2018; 36:2492-503.
|
[11] |
Rickman DS, Beltran H, Demichelis F, Rubin MA. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 2017; 23:1-10.
|
[12] |
Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrateresistant prostate cancer. Clin Canc Res 2013; 19:3621-30.
|
[13] |
Beltran H. Update on the biology and management of neuroendocrine prostate cancer. Clin Adv Hematol Oncol 2016; 14:513-5.
|
[14] |
Watts EL, Appleby PN, Perez-Cornago A, Bueno-de-Mesquita HB, Chan JM, Chen C, et al. Low free testosterone and prostate cancer risk: a collaborative analysis of 20 prospective studies. Eur Urol 2018; 74:585-94.
|
[15] |
Duffy MJ. PSA in screening for prostate cancer:more good than harm or more harm than good? Adv Clin Chem 2014; 66:1-23.
|
[16] |
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351:1502-12.
|
[17] |
de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364:1995-2005.
|
[18] |
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017; 377:352-60.
|
[19] |
Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367:1187-97.
|
[20] |
Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014; 371:424-33.
|
[21] |
Hussain M, Fizazi K, Saad F, Rathenborg P, Shore N, Ferreira U, et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2018; 378:2465-74.
|
[22] |
Smith MR, Antonarakis ES, Ryan CJ, Berry WR, Shore ND, Liu G, et al. Phase 2 study of the safety and antitumor activity of apalutamide (ARN-509), a potent androgen receptor antagonist, in the high-risk nonmetastatic castration-resistant prostate cancer cohort. Eur Urol 2016; 70:963-70.
|
[23] |
Matsubara N, Mukai H, Hosono A, Onomura M, Sasaki M, Yajima Y, et al. Phase 1 study of darolutamide (ODM- 201): a new-generation androgen receptor antagonist, in Japanese patients with metastatic castration-resistant prostate cancer. Canc Chemother Pharmacol 2017; 80:1063-72.
|
[24] |
Scher HI, Sawyers CL. Biology of progressive, castrationresistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005; 23:8253-61.
|
[25] |
Rove KO, Debruyne FM, Djavan B, Gomella LG, Koul HK, Lucia MS, et al. Role of testosterone in managing advanced prostate cancer. Urology 2012; 80:754-62.
|
[26] |
Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect 2019; 8:R10-26. https://doi.org/10.1530/EC-18-0425.
|
[27] |
Schulman CC, Irani J, Morote J, Schalken JA, Montorsi F, Chlosta PL, et al. Testosterone measurement in patients with prostate cancer. Eur Urol 2010; 58:65-74.
|
[28] |
Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA, et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castrationresistant prostate cancer. Canc Res 2008; 68:6407-15.
|
[29] |
Kumagai J, Hofland J, Erkens-Schulze S, Dits NF, Steenbergen J, Jenster G, et al. Intratumoral conversion of adrenal androgen precursors drives androgen receptoractivated cell growth in prostate cancer more potently than de novo steroidogenesis. Prostate 2013; 73:1636-50.
|
[30] |
Dal Pra A, Cury FL, Souhami L. Combining radiation therapy and androgen deprivation for localized prostate cancer-a critical review. Curr Oncol 2010; 17:28-38.
|
[31] |
Veccia A, Maines F, Caffo O. Cardiovascular toxicities of systemic treatments of prostate cancer: is oestrogen to the rescue? Nat Rev Urol 2017; 14:1. https://doi.org/10.1038/nrurol.2017.127.
pmid: 28035136
|
[32] |
Ockrim JL, Lalani EN, Laniado ME, Carter SS, Abel PD. Transdermal estradiol therapy for advanced prostate cancer- forward to the past? J Urol 2003; 169:1735-7.
|
[33] |
Morote J, Esquena S, Abascal JM, Trilla E, Cecchini L, Raventos CX, et al. Behavior of free testosterone in patients with prostate cancer on androgen deprivation therapy. Int J Biol Markers 2005; 20:119-22.
|
[34] |
Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 1989; 10:232-74.
|
[35] |
Yu EY, Getzenberg RH, Coss CC, Gittelman MM, Keane T, Tutrone R, et al. Selective estrogen receptor alpha agonist GTx-758 decreases testosterone with reduced side effects of androgen deprivation therapy in men with advanced prostate cancer. Eur Urol 2015; 67:334-41.
|
[36] |
Mainwaring WI. The separation of androgen receptor and 5 alpha-reductase activities in subcellular fractions of rat prostate. Biochem Biophys Res Commun 1970; 40:192-8.
|
[37] |
Zhou ZX, Lane MV, Kemppainen JA, French FS, Wilson EM. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol 1995; 9:208-18.
|
[38] |
Kemppainen JA, Lane MV, Sar M, Wilson EM. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem 1992; 267:968-74.
|
[39] |
Petrow V, Padilla GM, Mukherji S, Marts SA. Endocrine dependence of prostatic cancer upon dihydrotestosterone and not upon testosterone. J Pharm Pharmacol 1984; 36:352-3.
|
[40] |
Kadohama N, Karr JP, Murphy GP, Sandberg AA. Selective inhibition of prostatic tumor 5 alpha-reductase by a 4- methyl-4-azasteroid. Canc Res 1984; 44:4947-54.
|
[41] |
Kadohama N, Wakisaka M, Kim U, Karr JP, Murphy GP, Sandberg AA. Retardation of prostate tumor progression in the Noble rat by 4-methyl-4-aza-steroidal inhibitors of 5 alpha-reductase. J Natl Cancer Inst 1985; 74:475-86.
|
[42] |
Andriole GL, Rittmaster RS, Loriaux DL, Kish ML, Linehan WM. The effect of 4MA, a potent inhibitor of 5 alpha-reductase, on the growth of androgen-responsive human genitourinary tumors grown in athymic nude mice. Prostate 1987; 10:189-97.
|
[43] |
Grino P, Stoner E. Finasteride for the treatment and control of benign prostatic hyperplasia: summary of phase III controlled studies. The Finasteride Study Group. Eur Urol 1994; 25(Suppl. 1):24-8.
|
[44] |
Hudson PB, Boake R, Trachtenberg J, Romas NA, Rosenblatt S, Narayan P, et al. Efficacy of finasteride is maintained in patients with benign prostatic hyperplasia treated for 5 years. The North American Finasteride Study Group. Urology 1999; 53:690-5.
|
[45] |
Debruyne F, Barkin J, van Erps P, Reis M, Tammela TL, Roehrborn C, et al. Efficacy and safety of long-term treatment with the dual 5 alpha-reductase inhibitor dutasteride in men with symptomatic benign prostatic hyperplasia. Eur Urol 2004; 46:488-95.
|
[46] |
Frye SV. Discovery and clinical development of dutasteride, a potent dual 5alpha-reductase inhibitor. Curr Top Med Chem 2006; 6:405-21.
|
[47] |
Coltman Jr CA, Thompson Jr IM, Feigl P. Prostate cancer prevention trial (PCPT) update. Eur Urol 1999; 35:544-7.
|
[48] |
Thompson IM, Klein EA, Lippman SM, Coltman CA, Djavan B. Prevention of prostate cancer with finasteride: US/European perspective. Eur Urol 2003; 44:650-5.
|
[49] |
Andriole G, Bostwick D, Brawley O, Gomella L, Marberger M, Tindall D, et al. Chemoprevention of prostate cancer in men at high risk: rationale and design of the reduction by dutasteride of prostate cancer events (REDUCE) trial. J Urol 2004; 172:1314-7.
|
[50] |
Yepuru M, Wu Z, Kulkarni A, Yin F, Barrett CM, Kim J, et al. Steroidogenic enzyme AKR1C3 is a novel androgen receptorselective coactivator that promotes prostate cancer growth. Clin Canc Res 2013; 19:5613-25.
|
[51] |
Stigliano A, Gandini O, Cerquetti L, Gazzaniga P, Misiti S, Monti S, et al. Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer. J Endocrinol 2007; 194:55-61.
|
[52] |
Pont A, Williams PL, Azhar S, Reitz RE, Bochra C, Smith ER, et al. Ketoconazole blocks testosterone synthesis. Arch Intern Med 1982; 142:2137-40.
|
[53] |
Sikka SC, Swerdloff RS, Rajfer J. In vitro inhibition of testosterone biosynthesis by ketoconazole. Endocrinology 1985; 116:1920-5.
|
[54] |
Warshawsky I, Bu G, Schwartz AL. Binding analysis of aminoterminal and carboxyl-terminal regions of the 39-kDa protein to the low density lipoprotein receptor-related protein. J Biol Chem 1994; 269:3325-30.
|
[55] |
James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017; 377:338-51.
|
[56] |
Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013; 368:138-48.
|
[57] |
Ryan CJ, Crawford ED, Shore ND, Underwood 3rd W, Taplin ME, Londhe A, et al. The IMAAGEN study: effect of abiraterone acetate and prednisone on prostate-specific antigen and radiographic disease progression in patients with nonmetastatic castration resistant prostate cancer. J Urol 2018; 200:344-52.
|
[58] |
Kolinsky M, Rescigno P, de Bono JS. Chemical or surgical castrationdis this still an important question? JAMA Oncol 2016; 2:437-8.
|
[59] |
Millar RP, Lu ZL, Pawson AJ, Flanagan CA, Morgan K, Maudsley SR. Gonadotropin-releasing hormone receptors. Endocr Rev 2004; 25:235-75.
|
[60] |
Leuprolide Study G. Leuprolide versus diethylstilbestrol for metastatic prostate cancer. N Engl J Med 1984; 311:1281-6.
|
[61] |
Van Poppel H, Tombal B, de la Rosette JJ, Persson BE, Jensen JK, Kold Olesen T. Degarelix: a novel gonadotropinreleasing hormone (GnRH) receptor blocker-results from a 1-yr, multicentre, randomised, phase 2 dosage-finding study in the treatment of prostate cancer. Eur Urol 2008; 54:805-13.
|
[62] |
Pieczonka CM, Twardowski P, Renzulli 2nd J, Hafron J, Boldt-Houle DM, Atkinson S, et al. Effectiveness of subcutaneously administered leuprolide acetate to achieve low nadir testosterone in prostate cancer patients. Rev Urol 2018; 20:63-8.
|
[63] |
Adeniji AO, Chen M, Penning TM. AKR1C3 as a target in castrate resistant prostate cancer. J Steroid Biochem Mol Biol 2013; 137:136-49.
|
[64] |
Labrie F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat Rev Urol 2011; 8:73-85.
|
[65] |
Wangtrakuldee P, Adeniji AO, Zang T, Duan L, Khatri B, Twenter BM, et al. A 3-(4-nitronaphthen-1-yl) aminobenzoate analog as a bifunctional AKR1C3 inhibitor and AR antagonist: head to head comparison with other advanced AKR1C3 targeted therapeutics. J Steroid Biochem Mol Biol 2019. 192. 105283. https://doi.org/10.1016/j.jsbmb.2019.01.001.
doi: 10.1016/j.jsbmb.2019.01.001
pmid: 30641225
|
[66] |
Verma K, Gupta N, Zang T, Wangtrakluldee P, Srivastava SK, Penning TM, et al. AKR1C3 inhibitor KV-37 exhibits antineoplastic effects and potentiates enzalutamide in combination therapy in prostate adenocarcinoma Cells. Mol Canc Therapeut 2018; 17:1833-45.
|
[67] |
Loriot Y, Fizazi K, Jones RJ, van den Brande J, Molife RL, Omlin A, et al. Safety, tolerability and anti-tumour activity of the androgen biosynthesis inhibitor ASP9521 in patients with metastatic castration-resistant prostate cancer: multi-centre phase I/II study. Invest N Drugs 2014; 32:995-1004.
|
[68] |
Brinkmann AO, Klaasen P, Kuiper GG, van der Korput JA, Bolt J, de Boer W, et al. Structure and function of the androgen receptor. Urol Res 1989; 17:87-93.
|
[69] |
Tan MH, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36:3-23.
|
[70] |
Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem 2005; 280:37747-54.
|
[71] |
Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 2000; 275:26164-71.
|
[72] |
Bohl CE, Wu Z, Miller DD, Bell CE, Dalton JT. Crystal structure of the T877A human androgen receptor ligandbinding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. J Biol Chem 2007; 282:13648-55.
|
[73] |
Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci U S A 2005; 102:6201-6.
|
[74] |
Langley E, Kemppainen JA, Wilson EM. Intermolecular NH2- /carboxyl-terminal interactions in androgen receptor dimerization revealed by mutations that cause androgen insensitivity. J Biol Chem 1998; 273:92-101.
|
[75] |
Hoeck W, Rusconi S, Groner B. Down-regulation and phosphorylation of glucocorticoid receptors in cultured cells. Investigations with a monospecific antiserum against a bacterially expressed receptor fragment. J Biol Chem 1989; 264:14396-402.
|
[76] |
McIntyre WR, Samuels HH. Triamcinolone acetonide regulates glucocorticoid-receptor levels by decreasing the halflife of the activated nuclear-receptor form. J Biol Chem 1985; 260:418-27.
|
[77] |
Wu YL, Yang X, Ren Z, McDonnell DP, Norris JD, Willson TM, et al. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol Cell 2005; 18:413-24.
|
[78] |
Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389:753-8.
|
[79] |
Kuil CW, Mulder E. Mechanism of antiandrogen action: conformational changes of the receptor. Mol Cell Endocrinol 1994; 102:R1-5. https://doi.org/10.1016/0303-7207(94)90112-0.
|
[80] |
Pollock JA, Wardell SE, Parent AA, Stagg DB, Ellison SJ, Alley HM, et al. Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nat Chem Biol 2016; 12:795-801.
|
[81] |
Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Canc Cell 2010; 17:535-46.
|
[82] |
Ponnusamy S, Coss CC, Thiyagarajan T, Watts K, Hwang DJ, He Y, et al. Novel selective agents for the degradation of androgen receptor variants to treat castration-resistant prostate cancer. Canc Res 2017; 77:6282-98.
|
[83] |
Hwang DJ, He Y, Ponnusamy S, Mohler ML, Thiyagarajan T, McEwan IJ, et al. New generation of selective androgen receptor degraders: our initial design, synthesis, and biological evaluation of new compounds with enzalutamide-resistant prostate cancer activity. J Med Chem 2019; 62:491-511.
|
[84] |
Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, et al. Androgen receptor degradation by the proteolysistargeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol 2018; 1:100. https://doi.org/10.1038/s42003-018-0105-8.eCollection2018.
doi: 10.1038/s42003-018-0105-8
pmid: 30271980
|
[85] |
Jacobo E, Schmidt JD, Weinstein SH, Flocks RH. Comparison of flutamide (SCH-13521) and diethylstilbestrol in untreated advanced prostatic cancer. Urology 1976; 8:231-3.
|
[86] |
Carvalho AP, de Moura JL, Denis L, Newling D, Smith P, Bono A, et al. Zoladex and flutamide vs. orchidectomy: a phase III EORTC 30853 trial. EORTC Urological Group. Prog Clin Biol Res 1989; 303:129-43.
|
[87] |
Belanger A, Giasson M, Couture J, Dupont A, Cusan L, Labrie F. Plasma levels of hydroxy-flutamide in patients with prostatic cancer receiving the combined hormonal therapy: an LHRH agonist and flutamide. Prostate 1988; 12:79-84.
|
[88] |
Furr BJ, Valcaccia B, Curry B, Woodburn JR, Chesterson G, Tucker H. ICI 176,334: a novel non-steroidal, peripherally selective antiandrogen. J Endocrinol 1987; 113:R7-9. https://doi.org/10.1677/joe.0.113r007.
|
[89] |
Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009; 324:787-90.
|
[90] |
Schellhammer P, Sharifi R, Block N, Soloway M, Venner P, Patterson AL, et al. A controlled trial of bicalutamide versus flutamide, each in combination with luteinizing hormonereleasing hormone analogue therapy, in patients with advanced prostate cancer. Casodex Combination Study Group. Urology 1995; 45:745-52.
|
[91] |
Balbas MD, Evans MJ, Hosfield DJ, Wongvipat J, Arora VK, Watson PA, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013; 2:e00499. https://doi.org/10.7554/eLife.00499.
doi: 10.7554/eLife.00499
pmid: 23580326
|
[92] |
Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen receptor gene aberrations in circulating cellfree DNA: biomarkers of therapeutic resistance in castrationresistant prostate cancer. Clin Canc Res 2015; 21:2315-24.
|
[93] |
Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013; 3:1020-9.
|
[94] |
Korpal M, Korn JM, Gao X, Rakiec DP, Ruddy DA, Doshi S, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov 2013; 3:1030-43.
|
[95] |
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371:1028-38.
|
[96] |
Clegg NJ, Wongvipat J, Joseph JD, Tran C, Ouk S, Dilhas A, et al. ARN-509: a novel antiandrogen for prostate cancer treatment. Canc Res 2012; 72:1494-503.
|
[97] |
Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018; 378:1408-18.
|
[98] |
Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E, Wohlfahrt G, et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep 2015; 5:12007. https://doi.org/10.1038/srep12007.
doi: 10.1038/srep12007
pmid: 26137992
|
[99] |
Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S, et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2019; 380:1235-46.
|
[100] |
Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol 2019; 37:1120-9.
|
[101] |
Monaghan AE, McEwan IJ. A sting in the tail: the N-terminal domain of the androgen receptor as a drug target. Asian J Androl 2016; 18:687-94.
|
[102] |
Banuelos CA, Tavakoli I, Tien AH, Caley DP, Mawji NR, Li Z, et al. Sintokamide a is a novel antagonist of androgen receptor that uniquely binds activation function-1 in its aminoterminal domain. J Biol Chem 2016; 291:22231-43.
|
[103] |
Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013; 341:84-7.
|
[104] |
Lallous N, Leblanc E, Munuganti RS, Hassona MD, Nakouzi NA, Awrey S, et al. Targeting binding function-3 of the androgen receptor blocks its Co-chaperone interactions, nuclear translocation, and activation. Mol Canc Therapeut 2016; 15:2936-45.
|
[105] |
Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, et al. Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 2013; 4:1923. https://doi.org/10.1038/ncomms2912.
doi: 10.1038/ncomms2912
pmid: 23715282
|
[106] |
Li H, Ban F, Dalal K, Leblanc E, Frewin K, Ma D, et al. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J Med Chem 2014; 57:6458-67.
|
[1] |
Wattanachai Ratanapornsompong,Suthep Pacharatakul,Premsant Sangkum,Chareon Leenanupan,Wisoot Kongcharoensombat. Effect of puboprostatic ligament preservation during robotic-assisted laparoscopic radical prostatectomy on early continence: Randomized controlled trial[J]. Asian Journal of Urology, 2021, 8(3): 260-268. |
[2] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[3] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[4] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[5] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[6] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[7] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[8] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[9] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[10] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[11] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[12] |
Jean-Luc Descotes. Diagnosis of prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 129-136. |
[13] |
Gwenaelle Gravis. Systemic treatment for metastatic prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 162-168. |
[14] |
Hendrik van Poppel,Wouter Everaerts,Lorenzo Tosco,Steven Joniau. Open and robotic radical prostatectomy[J]. Asian Journal of Urology, 2019, 6(2): 125-128. |
[15] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
|
|
|
|