|
|
Coordinated AR and microRNA regulation in prostate cancer |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher()
|
Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom |
|
|
Abstract The androgen receptor (AR) remains a key driver of prostate cancer (PCa) progression, even in the advanced castrate-resistant stage, where testicular androgens are absent. It is therefore of critical importance to understand the molecular mechanisms governing its activity and regulation during prostate tumourigenesis. MicroRNAs (miRs) are small ~22 nt non-coding RNAs that regulate target gene, often through association with 3′ untranslated regions (3′UTRs) of transcripts. They display dysregulation during cancer progression, can function as oncogenes or tumour suppressors, and are increasingly recognised as targets or regulators of hormonal action. Thus, understanding factors which modulate miRs synthesis is essential. There is increasing evidence for complex and dynamic bi-directional cross-talk between the multi-step miR biogenesis cascade and the AR signalling axis in PCa. This review summarises the wealth of mechanisms by which miRs are regulated by AR, and conversely, how miRs impact AR's transcriptional activity, including that of AR splice variants. In addition, we assess the implications of the convergence of these pathways on the clinical employment of miRs as PCa biomarkers and therapeutic targets.
|
Received: 11 August 2019
Available online: 20 July 2020
|
Corresponding Authors:
Claire E. Fletcher
E-mail: Claire.fletcher07@imperial.ac.uk
|
|
|
|
Direct and indirect mechanisms of microRNA (miR)-regulation of androgen receptor (AR) activity. (A) AR transcription—miRs modulate expression of AR by targeting AR transcription factors and regulatory proteins. Let-7c indirectly represses AR activity by targeting c-Myc, which acts as a transcription factor for the AR gene [65,66]; (B) AR mRNA—miRs target AR directly through binding to microRNA response elements in its transcript. Most microRNAs target the 3′UTR [4,24,31,[38], [39], [40], [41], [42], [43],45,46], but interactions with the coding region and 5′UTR have also been reported [4,56]; (C) AR-mediated transcription of target genes—miRs modulate AR indirectly by targeting cofactors, regulators or effectors of AR activity [19,63,64]; (D) AR competitive endogenous RNAs (ceRNAs) —AR is regulated by ceRNAs containing microRNA response elements (MREs) for AR-targeting miRs. For example, PlncRNA-1 protects AR from miR-mediated repression. A direct transcriptional target of AR, this lncRNA contains some of the same miR binding sites as AR, allowing it to sequester two AR-targeting miRs: miR-34c and miR-297. These in turn directly suppress PlncRNA-1, creating a feedback loop of AR regulation [87].
|
Target | miR | Binding location | Identifying experiments | Effects on AR | References | AR-V7 | 181c-5p | 3′UTR | Expression of AR mRNA & protein/AR-V7 3′UTR luciferase reporter assay | miR-181c-5p overexpression represses AR-V7 activity, transcript & protein expression. | [23] | AR-V7/WT AR | 101-3p | 3′UTR | Expression of AR protein/3′UTR luciferase reporter assay (WT AR only) | miR-101-3p overexpression represses AR-V7 protein expression. | [24] | ARV4,V7/WT AR | 124-3p | 3′UTR | Expression of AR protein/3′UTR luciferase reporter assay | miR-124-3p overexpression represses AR-V7 activity, transcript & protein expression. | [22,100] | AR-V7/WT AR | 135b | 3′UTR | Expression of AR protein/3′UTR luciferase reporter assay | miR-135b overexpression represses AR-V7 protein expression. | [38] | AR-V7/WT AR | 488 | 3′UTR | Expression of AR mRNA & protein/3′UTR luciferase reporter assay | miR-488 overexpression represses AR-V7 transcript & protein expression. | [24,38] | AR-V7, V567es/WT AR | 346 | 3′UTR | Expression of AR protein/proliferation assays | miR-346 inhibition reduces AR expression and PCa proliferation. | [40] | AR-V7, V567es/WT AR | 361-3p | 3′UTR | Expression of AR protein/proliferation assays | miR-361-3p inhibition reduces AR expression and PCa proliferation. | [40] | AR-V7/WT AR | 193a-3p | CDS | Expression of AR protein/PSE-PBN luciferase reporter assay | miR-193a-3p overexpression represses AR-V7/WT AR activity & protein expression. | [24] | AR-V7/WT AR | 371-3p | CDS | Expression of AR protein/PSE-PBN luciferase reporter assay | miR-371-3p overexpression represses AR-V7/WT AR activity & protein expression. | [24] | AR-V7/WT AR | 646 | CDS | Expression of AR protein/PSE-PBN luciferase reporter assay | miR-646 overexpression represses AR-V7/WT AR activity & protein expression. | [24] |
|
Reported miRs targeting variant AR in prostate cancer.
|
|
Androgen receptor (AR) regulates microRNA (miR) biogenesis at different stages. 1) AR binds to androgen receptor elements (ARE) at promotor regions of miR genes or miR host genes to increase miR expression (e.g. miR-21, miR-29a, miR-29b, miR-22 or miR-14), or to repress it (e.g. miR-17a, miR-20a, miR-222/-221 and miR-31) [56,[103], [104], [105]]. 2) AR associates with lysine-specific demethylase 1 (KDM1A) to remove repressive methyl marks from AR-target miR genes to enhance transcription of miR-27a, miR-133b and miR-19a through post-translational modifications mediated by KDM1A at miR gene promotors [114]. 3) AR has been linked to altered methylation of miR-22 and miR-29a through an unknown mechanism [102]. 4) AR increases Drosha-mediated pri-miR processing of the miR-23a27a24-2 cluster to promote miR maturation [36]. 5) AR upregulates protein levels of the Drosha accessory factor, DGCR8 [35]. 6) Dicer, the enzyme responsible for generation of miR:miR? duplexes from pre-miRs, is transcriptionally-upregulated by androgen signaling [35].
|
[1] |
Sharifi N. Mechanisms of androgen receptor activation in castration-resistant prostate cancer. Endocrinology 2013; 154:4010-7.
|
[2] |
Lu C, Luo J. Decoding the androgen receptor splice variants. Transl Androl Urol 2013; 2:178-86.
|
[3] |
Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72:3457-62.
|
[4] |
Hagman Z, Larne O, Edsj? A, Bjartell A, Ehrnstr?m RA, Ulmert D, et al. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Canc 2010; 127:2768-76.
|
[5] |
Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate 2012; 72:1443-52.
|
[6] |
Moltzahn F, Olshen AB, Baehner L, Peek A, Fong L, St?ppler H, et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 2011; 71:550-60.
|
[7] |
Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Müller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 2011; 77:1265.e9-16. https://doi.org/10.1016/j.urology.2011.01.020.
|
[8] |
Bryant RJ, Pawlowski T, Catto JWF, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Canc 2012; 106:768-74.
|
[9] |
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova- Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105:10513-8.
|
[10] |
Brase JC, Johannes M, Schlomm T, F?lth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Canc 2011; 128:608-16.
|
[11] |
Nguyen HCN, Xie W, Yang M, Hsieh CL, Drouin S, Lee GSM, et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 2013; 73:346-54.
|
[12] |
Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 2012; 72:1469-77.
|
[13] |
Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2011; 71:326-31.
|
[14] |
Gonzales JC, Fink LM, Goodman OB, Symanowski JT, Vogelzang NJ, Ward DC. Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Canc 2011; 9:39-45.
|
[15] |
Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res 2016; 76:3666-70.
|
[16] |
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Drug Discov 2017; 16:203-22.
|
[17] |
Catela Ivkovic T, Voss G, Cornella H, Ceder Y. MicroRNAs as cancer therapeutics: a step closer to clinical application. Canc Lett 2017; 407:113-22.
|
[18] |
Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: current status and future directions. Canc Treat Rev 2016; 50:35-47.
|
[19] |
Hamilton MP, Rajapakshe KI, Bader DA, Cerne JZ, Smith EA, Coarfa C, et al. The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP. Neoplasia 2016; 18:356-70.
|
[20] |
Sikand K, Barik S, Shukla GC. MicroRNAs and Androgen Receptor 30 untranslated region: a missing link in castrationresistant prostate cancer? Mol Cell Pharmacol 2011; 3:107-13.
|
[21] |
Hu R, Isaacs WB, Luo J. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 2011; 71:1656-67.
|
[22] |
Shi XB, Ma AH, Xue L, Li M, Nguyen HG, Yang JC, et al. MiR-124 and androgen receptor signaling inhibitors repress prostate cancer growth by downregulating Androgen Receptor splice variants, EZH2, and Src. Cancer Res 2015; 75:5309-17.
|
[23] |
Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao G, et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis 2019; 10:37.
doi: 10.1038/s41419-018-1048-1
pmid: 30674872
|
[24] |
Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, et al. Identification of miR-30b-3p and miR- 30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget 2016; 7:72593-607.
|
[25] |
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15:509-24.
|
[26] |
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Canc 2015; 15:321-33.
|
[27] |
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol 2014; 9:287-314.
|
[28] |
Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6:376-85.
|
[29] |
Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A 2016; 113:E1881-9. https://doi.org/10.1073/pnas.1602532113.
|
[30] |
Fletcher CE, Godfrey JD, Shibakawa A, Bushell M, Bevan CL. A novel role for GSK3b as a modulator of Drosha microprocessor activity and microRNA biogenesis. Nucleic Acids Res 2016; 45:2809-28.
|
[31] |
Fernandes RC, Hickey TE, Tilley WD, Selth LA. Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer. Endocr Relat Canc 2019; 26:R237-57. https://doi.org/10.1530/ERC-18-0571.
|
[32] |
Fletcher CE, Dart DA, Bevan CL. Interplay between steroid signalling and microRNAs: implications for hormonedependent cancers. Endocr Relat Canc 2014; 21:R409-29. https://doi.org/10.1530/ERC-14-0208.
|
[33] |
Narayanan R, Jiang J, Gusev Y, Jones A, Kearbey JD, Miller DD, et al. MicroRNAs are mediators of androgen action in prostate and muscle. PloS One 2010; 5:e13637. https://doi.org/10.1371/journal.pone.0013637.
doi: 10.1371/journal.pone.0013637
pmid: 21048966
|
[34] |
Takayama K, Tsutsumi S, Katayama S, Okayama T, Horie- Inoue K, Ikeda K, et al. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 2010; 30:619-30.
|
[35] |
Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S, et al. Identifi- cation of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PloS One 2013; 8:e56592. https://doi.org/10.1371/journal.pone.0056592.
doi: 10.1371/journal.pone.0056592
|
[36] |
Fletcher CE, Dart DA, Sita-Lumsden A, Cheng H, Rennie PS, Bevan CL. Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum Mol Genet 2012; 21:3112-27.
|
[37] |
Faber PW, van Rooij HC, van der Korput HA, Baarends WA, Brinkmann AO, Grootegoed JA, et al. Characterization of the human androgen receptor transcription unit. J Biol Chem 1991; 266:10743-9.
|
[38] |
?stling P, Leivonen SK, Aakula A, Kohonen P, M?kel? R, Hagman Z, et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011; 71:1956-67.
|
[39] |
Kumar BS, Khaleghzadegan B, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, et al. Identification of miR-30b-3p and miR- 30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget 2016; 7:72593-607.
|
[40] |
Fletcher CE, Sulpice E, Combe S, Shibakawa A, Leach DA, Hamilton MP, et al. Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene 2019; 38:5700-24.
|
[41] |
Qu F, Cui X, Hong Y, Wang J, Li Y, Chen L, et al. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem 2013; 377:121-30.
|
[42] |
Liu C, Chen Z, Hu X, Wang L, Li C, Xue J, et al. MicroRNA-185 downregulates androgen receptor expression in the LNCaP prostate carcinoma cell line. Mol Med Rep 2015; 11:4625-32.
|
[43] |
Marisa Shiina YH, Kato T, Yamamura S, Tanaka Y, Majid S, Saini S, et al. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget 2017; 8:8356-68.
|
[44] |
Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, et al. MiR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 2014; 33:2495-503.
|
[45] |
Hagman Z, Haflidadóttir BS, Ceder JA, Larne O, Bjartell A, Lilja H, et al. miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients. Br J Canc 2013; 108:1668-76.
|
[46] |
Larne O, Hagman Z, Lilja J, Bjartell A, Edsj? A, Ceder Y. miR- 145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis. Carcinogenesis 2015; 36:858-66.
|
[47] |
El Bezawy R, Tinelli S, Tortoreto M, Doldi V, Zuco V, Folini M, et al. miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. J Exp Clin Canc Res 2019; 38:51. https://doi.org/10.1186/s13046-019-1060-z.
doi: 10.1186/s13046-019-1060-z
|
[48] |
Pennati A, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Valdagni R, et al. miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol 2014; 87:579-97.
|
[49] |
Li L, Li S. miR-205-5p inhibits cell migration and invasion in prostatic carcinoma by targeting ZEB1. Oncol Lett 2018; 16:1715-21.
|
[50] |
Ozen M, Karatas OF, Gulluoglu S, Bayrak OF, Sevli S, Guzel E, et al. Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression. Canc Invest 2015; 33:251-8.
|
[51] |
Duan K, Ge YC, Zhang XP, Wu SY, Feng JS, Chen SL, et al. miR-34a inhibits cell proliferation in prostate cancer by downregulation of SIRT1 expression. Oncol Lett 2015; 10:3223-7.
|
[52] |
Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate 2017; 77:1167-75.
|
[53] |
Rodríguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol cancer 2017; 16:156.
pmid: 28982366
|
[54] |
Gong P, Zhang Y, He D, Hsieh JT. MicroRNA-145 modulates tumor sensitivity to radiation in prostate cancer. Radiat Res 2015; 184:630-8.
|
[55] |
Zhang G, Tian X, Li Y, Wang Z, Li X, Zhu C. miR-27b and miR-34a enhance docetaxel sensitivity of prostate cancer cells through inhibiting epithelial-to-mesenchymal transition by targeting ZEB1. Biomed Pharmacother 2018; 97:736-44.
|
[56] |
Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res 2013; 73:1232-44.
|
[57] |
Mayr C, Bartel DP. Widespread shortening of 30UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009; 138:673-84.
|
[58] |
Miles WO, Lembo A, Volorio A, Brachtel E, Tian B, Sgroi D, et al. Alternative polyadenylation in triple-negative breast tumors allows NRAS and c-JUN to bypass PUMILIO posttranscriptional regulation. Cancer Res 2016; 76:7231-41.
|
[59] |
Lai DP, Tan S, Kang YN, Wu J, Ooi HS, Chen J, et al. Genomewide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum Mol Genet 2015; 24:3410-7.
|
[60] |
Van Etten JL, Nyquist M, Li Y, Yang R, Ho Y, Johnson R, et al. Targeting a single alternative polyadenylation site coordinately blocks expression of androgen receptor mRNA splice variants in prostate cancer. Cancer Res 2017; 77:5228-35.
|
[61] |
Mills IG. Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat Rev Canc 2014; 14:187-98.
|
[62] |
Heemers HV, Tindall DJ. Androgen Receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 2007; 28:778-808.
|
[63] |
Xiao J, Gong AY, Eischeid AN, Chen D, Deng C, Young CY, et al. miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 2012; 72:1514-22.
|
[64] |
Boll K, Reicher K, Kasack K, M?rbt N, Kretzschmar AK, Tomm JM, et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 2013; 32:277-85.
|
[65] |
Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses Androgen Receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem 2012; 287:1527-37.
|
[66] |
Bai S, Cao S, Jin L, Kobelski M, Schouest B, Wang X, et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene 2019; 38:4977-89.
|
[67] |
Freimer JW, Hu JT, Blelloch R. Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. eLife 2018; 7:e38014. https://doi.org/10.7554/eLife.38014.
pmid: 30044225
|
[68] |
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16:421-33.
|
[69] |
Duchaine TF, Fabian MR. Mechanistic insights into microRNAmediated gene silencing. Cold Spring Harb Perspect Biol 2019; 11:a032771. https://doi.org/10.1101/cshperspect.a032771.
pmid: 29959194
|
[70] |
Gobinet J, Auzou G, Nicholas JC, Sultan C, Jalaguier S. Characterization of the interaction between androgen receptor and a new transcriptional inhibitor, SHP. Biochemistry 2001; 40:15369-77.
|
[71] |
Cho S, Park JS, Kang YK. AGO2 and SETDB1 cooperate in promoter-targeted transcriptional silencing of the androgen receptor gene. Nucleic Acids Res 2014; 42:13545-56.
|
[72] |
Lanz RB, Razani B, Goldberg AD, O’Malley BW. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci U S A 2002; 99:16081-6.
|
[73] |
Hube F, Guo J, Chooniedass-Kothari S, Cooper C, Hamedani MK, Dibrov AA, et al. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 2006; 25:418-28.
|
[74] |
Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR, Li X, et al. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci U S A 2013; 110:6536-41.
|
[75] |
Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, et al. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J 2012; 31:4502-10.
|
[76] |
Brooke GN, Culley RL, Dart DA, Mann DJ, Gaughan L, McCracken SR, et al. FUS/TLS is a novel mediator of androgen-dependent cell-cycle progression and prostate cancer growth. Cancer Res 2011; 71:914-24.
|
[77] |
Dai L, Chen K, Youngren B, Kulina J, Yang A, Guo Z, et al. Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res 2016; 44:10454-66.
|
[78] |
Link S, Grund SE, Diederichs S. Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Res 2016; 44:5330-43.
|
[79] |
Sun D, Layer R, Mueller AC, Cichewicz MA, Negishi M, Paschal BM, et al. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR- 125b-2 miRNA cluster in prostate cancer cells. Oncogene 2014; 33:1448-57.
|
[80] |
Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011; 30:2719-33.
|
[81] |
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 2011; 146:353-8.
|
[82] |
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet- Navas D, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011; 147:370-81.
|
[83] |
Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147:344-57.
|
[84] |
Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011; 147:382-95.
|
[85] |
Xu N, Wu YP, Yin HB, Xue XY, Gou X. Molecular networkbased identification of competing endogenous RNAs and mRNA signatures that predict survival in prostate cancer. J Transl Med 2018; 16:274. https://doi.org/10.1186/s12967-018-1637-x.
pmid: 30286759
|
[86] |
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WY, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465:1033-8.
|
[87] |
Fang Z, Xu C, Li Y, Cai X, Ren S, Liu H, et al. A feed-forward regulatory loop between androgen receptor and PlncRNA-1 promotes prostate cancer progression. Canc Lett 2016; 374:62-74.
|
[88] |
Cui Z, Ren S, Lu J, Wang F, Xu W, Sun Y, et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA- 1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol 2013; 31:1117-23.
|
[89] |
Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008; 68:5469-77.
|
[90] |
Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69:2305-13.
|
[91] |
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371:1028-38.
|
[92] |
H?rnberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A, et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PloS One 2011; 6:e19059. https://doi.org/10.1371/journal.pone.0019059.
pmid: 21552559
|
[93] |
Sun S, Sprenger CCT, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120:2715-30.
|
[94] |
Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A, et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 2010; 107:16759-65.
|
[95] |
Zhan Y, Zhang G, Wang X, Qi Y, Bai S, Li D, et al. Interplay between cytoplasmic and nuclear androgen receptor splice variants mediates castration resistance. Mol Canc Res 2017; 15:59-68.
|
[96] |
Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015; 163:1011-25.
|
[97] |
Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69:16-22.
|
[98] |
Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z, et al. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci Rep 2015; 5:7654.
pmid: 25563505
|
[99] |
He Y, Lu J, Ye Z, Hao S, Wang L, Kohli M, et al. Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res 2018; 46:1895-911.
|
[100] |
Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013; 32:4130-8.
|
[101] |
Liu YN, Yin J, Barrett B, Sheppard-Tillman H, Li D, Casey OM, et al. Loss of androgen-regulated microRNA 1 activates SRC and promotes prostate cancer bone metastasis. Mol Cell Biol 2015; 35:1940-51.
|
[102] |
Pasqualini L, Bu H, Puhr M, Narisu N, Rainer J, Schlick B, et al. miR-22 and miR-29a are members of the Androgen Receptor cistrome modulating LAMC1 and Mcl-1 in prostate cancer. Mol Endocrinol 2015; 29:1037-54.
|
[103] |
Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67:6130-5.
|
[104] |
Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, et al. miR-21: an androgen receptorregulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009; 69:7165-9.
|
[105] |
Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Canc 2010; 126:1166-76.
|
[106] |
Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of microRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res 2011; 71:1313-24.
|
[107] |
Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate 2011; 71:604-14.
|
[108] |
Wang WLW, Chatterjee N, Chittur SV, Welsh J, Tenniswood MP. Effects of 1a,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Canc 2011; 10:58.
|
[109] |
Gui B, Hsieh CL, Kantoff PW, Kibel AS, Jia L. Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer. PloS One 2017; 12:e0184166. https://doi.org/10.1371/journal.pone.0184166.
doi: 10.1371/journal.pone.0184166
pmid: 28886115
|
[110] |
Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, J?nne A, et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 2012; 31:4460-71.
|
[111] |
Meng D, Yang A, Wan X, Zhang Y, Huang W, Zhao P, et al. A transcriptional target of androgen receptor, miR-421 regulates proliferation and metabolism of prostate cancer cells. Int J Biochem Cell Biol 2016; 73:30-40.
|
[112] |
Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447:407-12.
|
[113] |
Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, et al. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate 2015; 75:936-46.
|
[114] |
Takayama KI, Misawa A, Suzuki T, Takagi K, Hayashizaki Y, Fujimura T, et al. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun 2015; 6:8219. https://doi.org/10.1038/ncomms9219.
doi: 10.1038/ncomms9219
pmid: 26404510
|
[115] |
Nickerson ML, Das S, Im KM, Turan S, Berndt SI, Li H, et al. TET2 binds the androgen receptor and loss is associated with prostate cancer. Oncogene 2017; 36:2172-83.
|
[116] |
Cheng J, Guo S, Chen S, Mastriano SJ, Liu C, D’Alessio AC, et al. An extensive network of TET2- targeting MicroRNAs regulates malignant hematopoiesis. Cell Rep 2013; 5:471-81.
|
[117] |
Mishra S, Deng JJ, Gowda PS, Rao MK, Lin CL, Chen CL, et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 2014; 33:4097-106.
|
[118] |
Lin HK, Hu YC, Lee DK, Chang C. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol Endocrinol 2004; 18:2409-23.
|
[119] |
Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, et al. miR-21: an oncomir on strike in prostate cancer. Mol Canc 2010; 9:12.
|
[120] |
Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, et al. Up-regulation of Dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol 2006; 169:1812-20. https://doi.org/10.2353/ajpath.2006.060480.
|
[121] |
Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci U S A 2009; 106:15732-7.
|
[122] |
Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, et al. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 2008; 68:7938-46.
|
[123] |
Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195- 5p/29a-3p/29c-3p/CDC42 signals. Canc Lett 2017; 394:1-12.
|
[124] |
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Canc 2017; 24:R275-95. https://doi.org/10.1530/ERC-17-0121.
|
[125] |
Crawford ED, Heidenreich A, Lawrentschuk N, Tombal B, Pompeo ACL, Mendoza-Valdes A, et al. Androgen-targeted therapy in men with prostate cancer: evolving practice and future considerations. Prostate Cancer Prostatic Dis 2019; 22:24-38.
|
[126] |
Gamat M, McNeel DG. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr Relat Canc 2017; 24:T297-310.
|
[127] |
Kojima S, Goto Y, Naya Y. The roles of microRNAs in the progression of castration-resistant prostate cancer. J Hum Genet 2016; 62:25-31.
|
[128] |
Li F, Mahato RI. MicroRNAs and drug resistance in prostate cancers. Mol Pharm 2014; 11:2539-52.
|
[129] |
Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 2012; 72:1093-103.
|
[130] |
Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The micro- RNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PloS One 2012; 7:e52106. https://doi.org/10.1371/journal.pone.0052106.
doi: 10.1371/journal.pone.0052106
pmid: 23300597
|
[131] |
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Canc Cell 2010; 18:11-22.
|
[132] |
Goto Y, Kojima S, Nishikawa R, Kurozumi A, Kato M, Enokida H, et al. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. Br J Canc 2015; 113:1055-65.
|
[133] |
Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, et al. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Canc 2017; 117:409-20.
|
[134] |
Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak 1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A 2007; 104:19983-8.
|
[135] |
Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level_4.0 ng per milliliter. N Engl J Med 2004; 350:2239-46.
|
[136] |
Schr?der FH, Roobol MJ. Defining the optimal prostatespecific antigen threshold for the diagnosis of prostate cancer. Curr Opin Urol 2009; 19:227-31.
|
[137] |
Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 2010; 10:543-50.
|
[138] |
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011; 8:467-77.
|
[139] |
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenet 2018;10:59. https://doi.org/10.1186/s13148-018-0492-1.eCollection2018.
doi: 10.1186/s13148-018-0492-1
|
[140] |
Thorsen M, Blondal T, Mouritzen P. Quantitative RT-PCR for microRNAs in biofluids. In: Drug safety evaluation: methods and protocols. New York: Springer; 2017. p. 379-98.
|
[141] |
Li JZ, Li J, Wang HQ, Li X, Wen B, Wang YJ. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun 2017; 482:1381-6.
|
[142] |
Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate 2010; 71:604-14.
|
[143] |
Gao W, Hong Z, Huang H, Zhu A, Lin S, Cheng C, et al. miR- 27a in serum acts as biomarker for prostate cancer detection and promotes cell proliferation by targeting Sprouty2. Oncol Lett 2018; 16:5291-8.
|
[144] |
Kotb S, Mosharafa A, Essawi M, Hassan H, Meshref A, Morsy AJTB. CirculatingmiRNAs 21 and 221 as biomarkers for early diagnosis of prostate cancer. Tumour Biol 2014; 35:12613-7.
|
[145] |
Chu M, Chang Y, Li P, Guo Y, Zhang K, Gao W. Androgen receptor is negatively correlated with the methylationmediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol Rep 2014; 31:34-40.
|
[146] |
Huang X, Yuan T, Liang M, Du N, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 2015; 67:33-41.
|
[147] |
Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Canc 2012; 131:652-61.
|
[148] |
Selth LA, Das R, Townley SL, Coutinho I, Hanson AR, Centenera M, et al. A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene 2017; 36:24-34.
|
[149] |
Tiryakioglu D, Bilgin E, Holdenrieder S, Dalay N, Gezer U. miR-141 and miR-375 induction and release are different from PSA mRNA and PCA3 upon androgen stimulation of LNCaP cells. Biomed Rep 2013; 1:802-6.
|
[150] |
Sato S, Katsushima K, Shinjo K, Hatanaka A, Ohka F, Suzuki S, et al. Histone deacetylase inhibition in prostate cancer triggers miR-320-mediated suppression of the Androgen Receptor. Cancer Res 2016; 76:4192-204.
|
[151] |
Lieb V, Weigelt K, Scheinost L, Fischer K, Greither T, Marcou M, et al. Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 2017; 9:10402-16.
|
[152] |
Ghorbanmehr N, Gharbi S, Korsching E, Tavallaei M, Einollahi M, Mowla SJ. miR-21-5p, miR-141-3p, and miR-205-5p levels in urinedpromising biomarkers for the identification of prostate and bladder cancer. Prostate 2019; 79:88-95.
|
[153] |
Porzycki P, Ciszkowicz E, Semik M, Tyrka M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int Urol Nephrol 2018; 50:1619-26.
|
[154] |
Agaoglu FY, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, et al. Investigation of miR-21, miR- 141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol 2011; 32:583-8.
|
[155] |
Singh PK, Preus L, Hu Q, Yan L, Long MD, Morrison CD, et al. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget 2014; 5:824-40.
|
[156] |
Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2010; 71:326-31.
|
[157] |
Freds?e J, Rasmussen AKI, Thomsen AR, Mouritzen P, H?yer S, Borre M, et al. Diagnostic and prognostic microRNA biomarkers for prostate cancer in cell-free urine. Eur Urol Focus 2018; 4:825-33.
|
[158] |
Selth LA, Townley SL, Bert AG, Stricker PD, Sutherland PD, Horvath LG, et al. Circulating microRNAs predict biochemical recurrence in prostate cancer patients. Br J Canc 2013; 109:641-50.
|
[159] |
Linch M, Goh G, Hiley C, Shanmugabavan Y, McGranahan N, Rowan A, et al. Intratumoural evolutionary landscape of high-risk prostate cancer: the PROGENY study of genomic and immune parameters. Ann Oncol 2017; 28:2472-80.
|
[160] |
Wei L, Wang J, Lampert E, Schlanger S, DePriest AD, Hu Q, et al. Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators. Eur Urol 2017; 71:183-92.
|
[161] |
Yadav SS, Stockert JA, Hackert V, Yadav KK, Tewari AK. Intratumor heterogeneity in prostate cancer. Urol Oncol 2018; 36:349-60.
|
[162] |
Shah RB, Bentley J, Jeffery Z, DeMarzo AM. Heterogeneity of PTEN and ERG expression in prostate cancer on core needle biopsies: implications for cancer risk stratification and biomarker sampling. Hum Pathol 2015; 46:698-706.
|
[163] |
Gerlinger M, Catto JW, Orntoft TF, Real FX, Zwarthoff EC, Swanton C. Intratumour heterogeneity in urologic cancers: from molecular evidence to clinical implications. Eur Urol 2015; 67:729-37.
|
[164] |
Metcalf GAD, Shibakawa A, Patel H, Sita-Lumsden A, Zivi A, Rama N, et al. Amplification-free detection of circulating microRNA biomarkers from body fluids based on fluorogenic oligonucleotide-templated reaction between engineered peptide nucleic acid probes: application to prostate cancer diagnosis. Anal Chem 2016; 88:8091-8.
|
[165] |
Boriachek K, Umer M, Islam MN, Gopalan V, Lam AK, Nguyen NT, et al. An amplification-free electrochemical detection of exosomal miRNA-21 in serum samples. Analyst 2018; 143:1662-9.
|
[166] |
Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122da key factor and therapeutic target in liver disease. J Hepatol 2015; 62:448-57.
|
[167] |
Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015; 518:107-10.
|
[168] |
Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR- 34a mimic, administered twice weekly in patients with advanced solid tumors. Invest N Drugs 2017; 35:180-8.
|
[169] |
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez- Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368:1685-94.
|
[170] |
van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel TM, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir Res 2014; 111:53-9.
|
[171] |
Titze-de-Almeida R, David S, Titze-de-Almeida SS. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm Res 2017; 34:1339-63.
|
[172] |
Foss F, Queerfeld C, Porcu P, Kim Y, Pacheco T, Halwani A. Phase 1 trial evaluating MRG-106, a synthetic inhibitor of microRNA-155, in patients with cutaneous t-cell lymphoma (CTCL). J Clin Oncol 2017; 35:7564.
doi: 10.1200/JCO.2017.35.15_suppl.7564
|
[173] |
Offord C. Oligonucleotide therapeutics near approval. In: The scientist; 2016.
|
[174] |
Schmidt MF. miRNA targeting drugs: the next blockbusters? Methods Mol Biol 2017; 1517:3-22.
|
[175] |
Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10:33-9.
|
[176] |
Singh P, Uzgare A, Litvinov I, Denmeade SR, Isaacs JT. Combinatorial androgen receptor targeted therapy for prostate cancer. Endocr Relat Canc 2006; 13:653-66.
|
[177] |
Tran C, Ouk A, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009; 324:787-90.
|
[178] |
Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 2010; 13:356-61.
|
[179] |
Kroiss A, Vincent S, Decaussin-Petrucci M, Meugnier E, Viallet J, Ruffion A, et al. Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene 2014; 34:2846-55.
|
[180] |
Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, et al. MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 2007; 282:23716-24.
|
[181] |
Sun T, Ming Y, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The role of microRNA-221 and microRNA-222 in androgenindependent prostate cancer cell lines. Cancer Res 2009; 69:3356-63.
|
[182] |
Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB upregulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010; 38:5366-83.
|
[1] |
Wattanachai Ratanapornsompong,Suthep Pacharatakul,Premsant Sangkum,Chareon Leenanupan,Wisoot Kongcharoensombat. Effect of puboprostatic ligament preservation during robotic-assisted laparoscopic radical prostatectomy on early continence: Randomized controlled trial[J]. Asian Journal of Urology, 2021, 8(3): 260-268. |
[2] |
Kuangzheng Liu,Xinglin Chen,Xiaohan Ren,Yuqing Wu,Shancheng Ren,Chao Qin. SARS-CoV-2 effects in the genitourinary system and prospects of sex hormone therapy[J]. Asian Journal of Urology, 2021, 8(3): 303-314. |
[3] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[4] |
Renee E. Vickman,Omar E. Franco,Daniel C. Moline,Donald J. Vander Griend,Praveen Thumbikat,Simon W. Hayward. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review[J]. Asian Journal of Urology, 2020, 7(3): 191-202. |
[5] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[6] |
Dhirodatta Senapati,Sangeeta Kumari,Hannelore V. Heemers. Androgen receptor co-regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 219-232. |
[7] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[8] |
Chui Yan Mah,Zeyad D. Nassar,Johannes V. Swinnen,Lisa M. Butler. Lipogenic effects of androgen signaling in normal and malignant prostate[J]. Asian Journal of Urology, 2020, 7(3): 258-270. |
[9] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[10] |
Abhishek Tripathi,Shilpa Gupta. Androgen receptor in bladder cancer: A promising therapeutic target[J]. Asian Journal of Urology, 2020, 7(3): 284-290. |
[11] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[12] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[13] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[14] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[15] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
|
|
|
|