|
|
Morphometry scores: Clinical implications in the management of staghorn calculi |
Jared S. Winoker,Ryan A. Chandhoke,William Atallah,Mantu Gupta()
|
Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
|
|
Abstract Due to their large size, rapid growth, and attendant morbidity, staghorn calculi are complex clinical entities that impose significant treatment-related challenges. Moreover, their relative heterogeneity—in terms of both total stone burden and anatomic distribution—limits the ability to standardize their characterization and the reporting of surgical outcomes. Several morphometry systems currently exist to define the volumetric distribution of renal stones, in general, and to predict the outcomes of percutaneous nephrolithotomy; however, they fall short in their applicability to staghorn stones. In this review, we aim to discuss the clinical utility of morphometry systems and the influence of pelvicalyceal anatomy on the management of these complex calculi.
|
Received: 13 January 2019
Available online: 12 June 2019
|
Corresponding Authors:
Mantu Gupta
E-mail: mantu.gupta@mountsinai.org
|
|
|
|
Computerized comography-based three-dimensional reconstruction of a staghorn calculus with volumetric analysis.
|
Scoring system | Pertinent staghorn criteria | Limitations to applicability in staghorn patients | GSS [19] | Grades I/II: Not applicable Grade III: Partial staghorn (or calyceal or multiple stones in a patient with abnormal anatomy) Grade IV: Complete staghorn (or any stone in a spinal injury or spina bifida patient) | - No standardized definitions of “partial” or “complete” staghorn stones - Inclusion of other clinical variables within staghorn grading categories (grades III/IV) obscures interpretation of outcomes - Does not account for staghorn volume or stone hardness | S.T.O.N.E.score [20] | Maximum 3 points are assigned under “n” (number of calyces) for presence of a staghorn calculus | - No clinical definition of “staghorn” provided - Pools all staghorn stones together; does not subdivide by size and/or shape | CROES nomogram [21] | “Presence of staghorn” represents 1 of 6 nomogram parameters; reduces probability of being stone-free after PCNL | - No clinical definition of “staghorn” provided - Pools all staghorn stones together; does not subdivide by size and/or shape - Does not account for stone hardness or variant/complex renal anatomy | S-ReSC [22] | No specific criteria. Staghorn morphometry is indirectly accounted for by number of calyces involved by stone | - Does not specifically characterize staghorn complexity - Does not account for variant/complex renal anatomy, stone hardness, or stone volume |
|
Comparison of stone scoring systems on the basis of staghorn classification.
|
Studiesa | Stone-free definition | Key study features | Scoring systems | Major findings | Sfoungaristos et al. [34] | No fragments >4 mm on CT at 4-6 weeks | • 73 patients • Complete 26 (35.6%) • Partial 47 (64.4%) • Single-stage PCNL • Mean stone burden: 1 253.5 mm2 | GSS S.T.O.N.E. CROES | • Overall SFR = 65.8% • Overall complications rate = 42.5% • S.T.O.N.E. score was the only independent predictor of SFR • AUCs GSS = 0.635 CROES = 0.687 S.T.O.N.E. = 0.743 | Choi et al. [35] | No fragments >4 mm on KUB on postoperative day 1 (or CT if radiolucent stones) | • 217 patients • Complete 106 (48.8%) • Partial 111 (51.2%) • Some patients underwent staged procedures • Mean stone burden: 1 358.3 mm2 | GSS S.T.O.N.E. CROES | • Overall SFR = 70.1% • Overall complications rate = 32.7% • Independent predictors of SFR: NIC, pre-existent UTI, S.T.O.N.E. score • AUCs GSS = 0.678, CROES = 0.627 S.T.O.N.E. = 0.746 | Yarimoglu et al. [36] | No fragments ≥4 mm on KUB at 1 month (or CT if radiolucent stones) | • 160 patients • Complete 76 (47.5%) • Partial 84 (52.5%) • Mean stone burden: 952.9 mm2 | GSS S.T.O.N.E. CROES S-ReSC | • Overall SFR = 58.8% • Overall complications rate = 36.2% • GSS and S-ReSC were independently predictive of SFR • Did not calculate AUC for scoring systems |
|
Comparative studies evaluating morphometry systems in staghorn patients.
|
|
Influence of infundibular angle on nephroscope maneuverability during percutaneous nephrolithotomy. (A) Computerized tomography (CT) urogram with a theoretical supracostal upper pole access showing aninfundibular angle into an interpolar calyx of 55°, indicating low likelihood of entry by rigidnephroscopy; (B) CT urogram with a theoretical supracostal upper pole access showing an infundibular angle into a lower pole calyx of 130°, indicating high likelihood of entry by rigid nephroscopy.
|
|
Influence of renal pelvis shape on percutaneous nephrolithotomy. (A) Singular renal pelvis draining all upper, lower, and interpolar calyces of the kidney; (B) Divided renal pelvis with one portion draining the upper pole and anotherdraining both the lower and interpolar calyces.
|
[1] |
G.M. Preminger, D.G. Assimos, J.E. Lingeman, S.Y. Nakada, M.S. Pearle, J.S. Wolf Jr., et al. Chapter 1: AUA Nephrolithiasis Guideline Panel. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol, 173(2005), pp. 1991-2000.
|
[2] |
H.S. Lam, J.E. Lingeman, R. Russo, G.T. Chua. Stone surface area determination techniques: a unifying concept of staghorn stone burden assessment. J Urol, 148(1992), pp. 1026-1029.
|
[3] |
F. Rocco, A. Mandressi, P. Larcher. Surgical classification of renal calculi. Eur Urol, 10(1984), pp. 121-123.
|
[4] |
D.P. Griffith, L. Valiquette. PICA/burden: a staging system for upper tract urinary stones. J Urol, 138(1987), pp. 253-257.
|
[5] |
F. Di Silverio, M. Gallucci, G. Alpi. Staghorn calculi of the kidney: classification and therapy. Br J Urol, 65(1990), pp. 449-452.
|
[6] |
J.J. Rassweiler, C. Renner, F. Eisenberger. The management of complex renal stones. BJU Int, 86(2000), pp. 919-928.
|
[7] |
G. Bandi, R.J. Meiners, P.J. Pickhardt, S.Y. Nakada. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int, 103(2009), pp. 524-528.
|
[8] |
G.M. Preminger. High burden and complex renal calculi: aggressive percutaneous nephrolithotomy versus multimodal approaches. Arch Ital Urol Androl, 82(2010), pp. 37-40.
|
[9] |
S. Demehri, M.K. Kalra, M.L. RybickiFJ Steigner, M.J. Lang, E.A. Houseman, et al. Quantification of urinary stone volume: attenuation threshold-based CT method—a technical note. Radiology, 258(2011), pp. 915-922.
|
[10] |
W. Finch, R. Johnston, N. Shaida, A. Winterbottom, O. Wiseman. Measuring stone volume—three-dimensional software reconstruction or an ellipsoid algebra formula?. BJU Int, 113(2014), pp. 610-614.
|
[11] |
R. Jain, M. Omar, H. Chaparala, A. Kahn, J. Li, L. Kahn , et al. How accurate are we in estimating true stone volume? A comparison of water displacement, ellipsoid formula, and a CT-based software tool. J Endourol, 32(2018 Jun), pp. 572-576.
|
[12] |
S. Meretyk, O.N. Gofrit, O. Gafni, D. Pode, A. Shapiro, A. Verstandig , et al. Complete staghorn calculi: random prospective comparison between extracorporeal shock wave lithotripsy monotherapy and combined with percutaneous nephrostolithotomy. J Urol, 157(1997), pp. 780-786.
|
[13] |
K.M. Al-Kohlany, A.A. Shokeir, A. Mosbah, T. Mohsen, A.M. Shoma, I. Eraky, et al. Treatment of complete staghorn stones: a prospective randomized comparison of open surgery versus percutaneous nephrolithotomy. J Urol, 173(2005), pp. 469-473.
|
[14] |
K.A. Blum, E. Parkhomenko, J. Thai, T. Tran, M. Gupta. A contemporary lower pole approach for complete staghorn calculi: outcomes and efficacy. World J Urol, 36(2018), pp. 1461-1467.
|
[15] |
G. Goktug, N. Karakoyunlu, N.C. Sener, K. Zengin, I. Nalbant, O. Karabacak , et al. Standard percutaneous nephrolithotomy alone versus in combination with intraoperative anterograde flexible nephroscopy for staghorn stones: a retrospective study. Kaohsiung J Med Sci, 31(2015), pp. 568-571.
|
[16] |
M. Desai, A. De Lisa, B. Turna, J. Rioja, H. Walfridsson, A. D'Addessi, et al. The clinical research office of the endourological society percutaneous nephrolithotomy global study: staghorn versus nonstaghorn stones. J Endourol, 25(2011), pp. 1263-1268.
|
[17] |
B. Turna, M. Umul, S. Demiryoguran, B. Altay, O. Nazli. How do increasing stone surface area, and stone configuration affect the overall outcome of percutaneous nephrolithotomy. J Endourol, 5(2007), pp. 34-43.
|
[18] |
D. Opondo, A. Tefekli, T. Esen, G. Labate, K. Sangam, A. De Lisa , et al. Impact of case volumes on the outcomes of percutaneous nephrolithotomy. Eur Urol, 62(2012), pp. 1181-1187.
|
[19] |
K. Thomas, N.C. Smith, N. Hegarty, J.M. Glass. The Guy's stone score—grading the complexity of percutaneous nephrolithotomy procedures. Urology, 78(2011), p. 277.
|
[20] |
Z. Okhunov, J.I. Friedlander, A.K. George, B.D. Duty, D.M. Moreira, A.K. Srinivasan , et al. S.T.O.N.E.nephrolithometry: Novel surgical classification system for kidney calculi. Urology, 81(2013), p. 1154.
|
[21] |
Smith, T.D. Averch, K. Shahrour, D. Opondo, F.P. Daels, G. Labate, et al. A nephrolithometric nomogram to predict treatment success of percutaneous nephrolithotomy. J Urol, 190(2013), p. 149.
|
[22] |
C.W. Jeong, J.W. Jung, W.H. Cha, B.K. Lee, S. Lee, S.J. Jeong , et al. Seoul national university renal stone complexity score for predicting stone-free rate after percutaneous nephrolithotomy. PLoS One, 8(2013),Article e65888, 10.1371/journal.pone.0065888.
doi: 10.1371/journal.pone.0065888
|
[23] |
J.P. Ingimarsson, L.M. Dagrosa, E.S. Hyams, V.M. Pais Jr. External validation of a preoperative renal stone grading system: reproducibility and inter-rater concordance of the Guy's stone score using preoperative computed tomography and rigorous postoperative stone-free criteria. Urology, 83(2014), p. 45.
|
[24] |
L.M. Huynh, E. Huang, R.M. Patel, Z. Okhunov. Predictability and practicality of image-based scoring systems for patient Assessment and outcome stratification during percutaneous nephrolithotomy: a contemporary update. Curr Urol Rep, 18(2017), p. 95.
|
[25] |
P. Motamedinia, Z. Okhunov, Z. Okeke, A.D. Smith. Contemporary assessment of renal stone complexity using cross-sectional imaging. Curr Urol Rep, 16(2015), p. 18.
|
[26] |
T.O. Tailly, Z. Okhunov, B.R. Nadeau, M.J. Huynh, K. Labadie, A. Akhavein , et al. Multicenter external validation and comparison of stone scoring systems in predicting outcomes after percutaneous nephrolithotomy. J Endourol, 30(2016), pp. 594-601.
|
[27] |
K. Labadie, Z. Okhunov, A. Akhavein, D.M. Moreira, J. Moreno-Palacios, M. Del Junco , et al. Evaluation and comparison of urolithiasis scoring systems used in percutaneous kidney stone surgery. J Urol, 193(2015), pp. 154-159.
|
[28] |
J. Jaipuria, M. Suryavanshi, T.K. Sen. Comparative testing of reliability and audit utility of ordinal objective calculus complexity scores. Can we make an informed choice yet? BJU Int, 118(2016), pp. 958-968.
|
[29] |
J. Withington, J. Armitage, W. Finch, O. Wiseman, J. Glass, N. Burgess. Assessment of stone complexity for PCNL: a systematic review of the literature, how best can we record stone complexity in PCNL? . J Endourol, 30(2016), pp. 13-23.
|
[30] |
I.H. Bozkurt, O. Aydogdu, T. Yonguc, S. Yarimoglu, V. Sen, B. Gunlusoy. Comparison of Guy and Clinical Research Office of the Endourological Society Nephrolithometry Scoring Systems for predicting stone-free status and complication rates after percutaneous nephrolithotomy: a single center study with 437 cases. J Endourol, 29(2015), pp. 1006-1010.
|
[31] |
M.S. Choo, C.W. Jeong, J.H. Jung, S.B. Lee, H. Jeong, H. Son, et al External validation and evaluation of reliability and validity of the S-ReSC scoring system to predict stone-free status after percutaneous nephrolithotomy. PLoS One, 9(2014), Article e83628, 10.1371/journal.pone.0083628.
doi: 10.1371/journal.pone.0083628
|
[32] |
J. Park, M. Kang, C.W. Jeong, S. Oh, J.W. Lee, S.B. Lee , et al. External validation and evaluation of reliability and validity of the modified Seoul National University renal stone complexity scoring system to predict stone-free status after retrograde intrarenal surgery. J Endourol, 29(2015), pp. 888-893.
|
[33] |
J.W. Jung, B.K. Lee, Y.H. Park, S. Lee, S.J. Jeong, S.E. Lee , et al. Modified Seoul National University renal stone complexity score for retrograde intrarenal surgery. Urolithiasis, 42(2014), pp. 335-340.
|
[34] |
S. Sfoungaristos, O.N. Gofrit, D. Pode, E.H. Landau, M. Duvdevani. Percutaneous nephrolithotomy for staghorn stones: which nomogram can better predict postoperative outcomes? World J Urol, 34(2016), pp. 1163-1168.
|
[35] |
S.W. Choi, W.J. Bae, U.S. Ha, S.H. Hong, J.Y. Lee, S.W. Kim , et al. Prognostic impact of stone-scoring systems after percutaneous nephrolithotomy for staghorn calculi: a single center's experience over 10 years. J Endourol, 30(2016), pp. 975-981.
|
[36] |
S. Yarimoglu, I.H. Bozkurt, O. Aydogdu, T. Yonguc, E. Sefik, Y.K. Topcu , et al. External validation and comparison of the scoring systems (S.T.O.N.E, GUY, CROES, S-ReSC) for predicting percutaneous nephrolithotomy outcomes for staghorn stones: a single center experience with 160 cases. Kaohsiung J Med Sci, 33(2017), pp. 516-522.
|
[37] |
H.A. Aldaqadossi, H. Khairy Salem, Y. Kotb, H.A. Hussein, H. Shaker, N. Dikaios. Prediction of pediatric percutaneous nephrolithotomy outcomes using contemporary scoring systems. J Urol, 198(2017), pp. 1146-1152.
|
[38] |
?itamak, H.S. Dogan, T. Ceylan, B. Hazir, C.Y. Bilen, A. Sahin , et al. A new simple scoring system for prediction of success and complication rates in pediatric percutaneous nephrolithotomy: stone-kidney size score. J Pediatr Urol, 15 ( 2019), pp. 67.e1-67.e6.https://www.jpurol.com/article/S1477-5131(18)30602-8/fulltext.
|
[39] |
S. Mishra, R.B. Sabnis, M. Desai. Staghorn morphometry: a new tool for clinical classification and prediction model for percutaneous nephrolithotomy monotherapy. J Endourol, 26(2012), p. 6.
|
[40] |
F.J.B. Simpatico, C.A. Mandarim-de-Lacerda. 3-Dimensional and radiological pelviocaliceal anatomy for endourology. J Urol, 140(1988), pp. 1352-1355.
|
[41] |
J. Miller, J.C. Durack, M.D. Sorensen, J.H. Wang, M.L. Stoller. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging. J Urol, 189(2013), pp. 562-567.
|
[42] |
G.B. Guglielmetti, A. Danilovic, F.C. Torricelli, R.F. Coelho, E. Mazzucchi, M. Srougi. Predicting calyceal access for percutaneous nephrolithotomy with computed tomography multiplanar reconstruction. Clinics (Sao Paulo), 68(2013), pp. 892-895.
|
[43] |
N.L. Miller, B.R. Matlaga, J.E. Lingeman. Techniques for fluoroscopic percutaneous renal access. J Urol, 178(2007), pp. 15-23.
|
[44] |
R. Takazawa, S. Kitayama, Y. Uchida, S. Yoshida, Y. Kohno, T. Tsujii. Proposal for a simple anatomical classification of the pelvicalyceal system for endoscopic surgery. J Endourol, 32(2018), pp. 753-758.
|
[1] |
Sudharsan Balaji,Arvind Ganpule,Thomas Herrmann,Ravindra Sabnis,Mahesh Desai. Contemporary role of multi-tract percutaneous nephrolithotomy in the treatment of complex renal calculi[J]. Asian Journal of Urology, 2020, 7(2): 102-109. |
[2] |
Russell S. Terry,Glenn M. Preminger. Metabolic evaluation and medical management of staghorn calculi[J]. Asian Journal of Urology, 2020, 7(2): 122-129. |
[3] |
Etienne Xavier Kellera,Vincent De Conincka,Steeve Doizia,Olivier Traxer. The role of ureteroscopy for treatment of staghorn calculi: A systematic review[J]. Asian Journal of Urology, 2020, 7(2): 110-115. |
[4] |
Osman Ermis,Bhaskar Somani,Thomas Reeves,Selcuk Guven,Pilar Laguna Pes,Arun Chawla,Padmaraj Hegde,Jean de la Rosette. Definition, treatment and outcome of residual fragments in staghorn stones[J]. Asian Journal of Urology, 2020, 7(2): 116-121. |
[5] |
Xiaofeng Gao,Ziyu Fang,Chaoyue Lu,Rong Shen,Hao Dong,Yinghao Sun. Management of staghorn stones in special situations[J]. Asian Journal of Urology, 2020, 7(2): 130-138. |
[6] |
Nariman Gadzhiev,Vigen Malkhasyan,Gagik Akopyan,Sergei Petrov,Francis Jefferson,Zhamshid Okhunov. Percutaneous nephrolithotomy for staghorn calculi: Troubleshooting and managing complications[J]. Asian Journal of Urology, 2020, 7(2): 139-148. |
[7] |
lIlan Klein,Jorge Gutiérrez-Aceves. Preoperative imaging in staghorn calculi, planning and decision making in management of staghorn calculi[J]. Asian Journal of Urology, 2020, 7(2): 87-93. |
[8] |
Arvind P. Ganpule,M. Naveen Kumar Reddy,S.B. Sudharsan,Shaishav B. Shah,Ravindra B. Sabnis,Mahesh R. Desai. Multitract percutaneous nephrolithotomy in staghorn calculus[J]. Asian Journal of Urology, 2020, 7(2): 94-101. |
[9] |
Guangju Ge,Zhenghui Wang,Mingchao Wang,Gonghui Li,Zuhao Xu,Yukun Wang,Shawpong Wan. Inadvertent insertion of nephrostomy tube into the renal vein following percutaneous nephrolithotomy: A case report and literature review[J]. Asian Journal of Urology, 2020, 7(1): 64-67. |
[10] |
Carter Boyd,Kyle Wood,Dustin Whitaker,Dean G. Assimos. The influence of metabolic syndrome and its components on the development of nephrolithiasis[J]. Asian Journal of Urology, 2018, 5(4): 215-222. |
[11] |
Itay M. Sabler,Ioannis Katafigiotis,Ofer N. Gofrit,Mordechai Duvdevani. Present indications and techniques of percutaneous nephrolithotomy: What the future holds?[J]. Asian Journal of Urology, 2018, 5(4): 287-294. |
[12] |
Igor Sorokin,Margaret S. Pearle. Medical therapy for nephrolithiasis: State of the art[J]. Asian Journal of Urology, 2018, 5(4): 243-255. |
[13] |
Luke F. Reynolds,Tad Kroczak,Kenneth T. Pace. Indications and contraindications for shock wave lithotripsy and how to improve outcomes[J]. Asian Journal of Urology, 2018, 5(4): 256-263. |
[14] |
Charlimagne M. Montealegre, Rizalinda L. De Leon. Effect of Blumea balsamifera extract on the phase and morphology of calcium oxalate crystals[J]. Asian Journal of Urology, 2017, 4(4): 201-207. |
[15] |
Graziele Halmenschlager, Ernani Luis Rhoden, Gabriela Almeida Motta, Lucas Sagrillo Fagundes, Jorge Luiz Medeiros Jr, Rosalva Meurer, Cláudia Ramos Rhoden. Testosterone replacement maintains smooth muscle content in the corpus cavernosum of orchiectomized rats[J]. Asian Journal of Urology, 2017, 4(4): 223-229. |
|
|
|
|