|
|
Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao()
|
Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China |
|
|
Abstract Objectives: To summarize the experience of the first 500 robot-assisted laparoscopic radical prostatectomy (RALP) cases by one surgeon and analyze the influencing factors of functional and oncological outcomes. Methods: Between April 2012 and October 2017, 500 patients who underwent RALP were included and divided sequentially into five equal groups. Patients’ preoperative, perioperative and postoperative outcomes were analyzed and evaluated, and the Kruskal-Wallis test was used to analyze and compare the effect of surgeon experience by case. Results: There is a statistically significant reduction in operative time, intraoperative estimated blood loss and postoperative hospital stay time (all p<0.001) with the increased experience. The results show that experience was the most important influencing factor in both operative time and blood loss. Pelvic lymph node dissection (PLND) might increase the operative time. The total positive surgical margin (PSM) rate was 21.8%. The PSM rate in pT3 tumors was significantly higher than that in pT2 tumors (12.0% vs. 37.1%, p<0.001). The 5-year biochemical recurrence (BCR)-free rate was 70.8%. The results of Cox regression showed that preoperative prostate-specific antigen (PSA), postoperative Gleason score (GS), and pathologic T stage were independent risk factors for BCR. Conclusion: After approximately 200 cases, the surgeon reached a plateau for RALP, but the outcomes could still improve after more cases. The surgeon's experience was the most important influencing factor for both operative time and blood loss. PSM rate was mainly determined by tumor stage rather than by operation experience.
|
Received: 08 April 2019
Available online: 23 December 2019
|
Corresponding Authors:
Xu Gao
E-mail: gaoxu.changhai@foxmail.com
|
|
|
Clinical data | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | p-Value | Overall | 1-100 | 101-200 | 201-300 | 301-400 | 401-500 | Age, mean±SD, year | 67.4±6.85 | 66.5±6.57 | 66.2±6.30 | 66.7±6.45 | 66.7±7.75 | 0.788b | 66.7 (6.79) | BMI, mean±SD, kg/m2 | 24.0±2.90 | 24.4±2.70 | 24.6±2.83 | 24.1±2.41 | 24.6±3.20 | 0.502c | 24.3 (2.82) | Preoperative PSA, n (%) | | | | | | 0.342d | | <4.0 | 4 (4.0) | 2 (2.0) | 1 (1.0) | 1 (1.0) | 2 (2.0) | | 10 (2.0) | 4.0-9.9 | 35 (35.0) | 34 (34.0) | 27 (27.0) | 32 (32.0) | 31 (31.0) | | 159 (31.8) | 10.0-19.9 | 31 (31.0) | 31 (31.0) | 33 (33.0) | 33 (33.0) | 32 (32.0) | | 160 (32.0) | >19.9 | 30 (30.0) | 33 (33.0) | 39 (39.0) | 34 (34.0) | 35 (35.0) | | 171 (34.2) | Clinical stage, n (%) | | | | | | 0.005d | | T1 | 30 (30) | 37 (37) | 63 (63) | 40 (40) | 24 (24) | | 194 (38.8) | T2 | 61 (61) | 54 (54) | 23 (23) | 41 (41) | 54 (54) | | 23 (46.6) | T2a | 31 (31.0) | 32 (32.0) | 12 (12.0) | 19 (19.0) | 13 (13.0) | | 107 (21.4) | T2b | 30 (30.0) | 21 (21.0) | 2 (2.0) | 6 (6.0) | 11 (11.0) | | 70 (14.0) | T2c | 0 (0.0) | 1 (1.0) | 9 (9.0) | 16 (16.0) | 30 (30.0) | | 56 (11.2) | T3 and T4a | 9 (9.0) | 9 (9.0) | 14 (14.0) | 19 (19.0) | 22 (22.0) | | 73 (14.6) | GS, n (%) | | | | | | 0.633d | | <7 | 21 (21.0) | 33 (33.0) | 30 (30.0) | 24 (24.0) | 21 (21.0) | | 129 (25.8) | =7 | 45 (45.0) | 38 (38.0) | 26 (26.0) | 35 (35.0) | 44 (44.0) | | 188 (37.6) | >7 | 34 (34.0) | 29 (29.0) | 44 (44.0) | 41 (41.0) | 35 (35.0) | | 183 (36.6) | D'Amico risk group, n(%) | | | | | | 0.084d | | Low | 12 (13.0) | 10 (10.0) | 14 (14.0) | 12 (12.0) | 10 (10.0) | | 58 (11.8) | Intermediate | 31 (33.0) | 38 (38.0) | 22 (22.0) | 26 (27.0) | 22 (22.0) | | 139 (28.4) | High | 57 (54.0) | 52 (52.0) | 64 (64.0) | 62 (61.0) | 68 (68.0) | | 303 (59.8) |
|
Preoperative characteristics for each group and overall.
|
Characteristics | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | p-Value | Overall | 1-100 | 101-200 | 201-300 | 301-400 | 401-500 | 500 | Operative time, median (IQR), min | 165 (140-198.75) | 130 (110-150) | 110 (100-123.75) | 105 (90-130) | 90 (75-105) | <0.001a | 120 (100-150) | Blood loss, median (IQR), mL | 200 (105-300) | 200 (100-200) | 100 (70-187.5) | 100 (100-200) | 100 (50-128.75) | <0.001a | 100 (100-200) | Postoperative hospital stays median (IQR), day | 9 (7-11) | 6 (5-8) | 5 (5-7) | 5 (4-7) | 5 (4-6) | 0.001a | 6 (5-8) | NVB preserving, n | 1 | 1 | 6 | 26 | 34 | | 68 | Unilateral | 1 | 0 | 3 | 9 | 11 | | | Bilateral | 0 | 1 | 3 | 17 | 23 | | | T2 | 1 | 1 | 6 | 26 | 32 | | | T3 | 0 | 0 | 0 | 0 | 2 | | | Pathologic stage, n (%) | | | | | | 0.001b | 500 | pT2 | 75 (75) | 66 (66) | 47 (47) | 58 (58) | 54 (54) | | 300 (60) | pT3 | 23 (23) | 34 (34) | 53 (53) | 42 (42) | 45 (45) | | 197 (39.4) | pT4 | 2 (2) | 0 (0) | 0 (0) | 0 (0) | 1 (1) | | 3 (0.6) | Gleason score, n (%) | | | | | | 0.201b | | <7 | 20 (20) | 15 (15) | 13 (13) | 15 (15) | 14 (14) | | 77 (15.4) | =7 | 54 (54) | 64 (64) | 54 (54) | 58 (58) | 51 (51) | | 281 (56.2) | >7 | 26 (26) | 21 (21) | 33 (33) | 27 (27) | 35 (35) | | 142 (28.4) | PSM+ n (%) | 23 (23.5) | 24 (24.0) | 29 (29.0) | 18 (18.0) | 15 (15.2) | 0.143b | 109 (21.8) | pT2 | 13 (17.3) | 9 (13.6) | 5 (10.6) | 5 (8.6) | 4 (7.4) | 0.409b | 36 (12.0) | pT3 | 10 (43.5) | 15 (44.1) | 24 (45.3) | 13 (31.0) | 11 (24.4) | 0.170b | 73 (37.1) |
|
Perioperative characteristics for each group and overall.
|
Covariate | Univariate analysis | Multivariate analysis | HR (95% CI) | p-Value | HR (95% CI) | p-Value | Postoperative GS | =6a | 1 | | 1 | | >7 | 24.717 (5.827-100.272) | <0.0001 | 11.325 (2.590-49.520) | 0.0013 | Preoperative PSA | <10a | 1 | | 1 | | >20 | 7.004 (3.672-13.359) | <0.0001 | 4.174 (2.077-8.391) | <0.0001 | Age | ≤59a | 1 | | | | 74 | 1.475 (0.638-3.411) | 0.3631 | | | BMI | <24a | 1 | | | | ≥24 | 1.100 (0.671-1.802) | 0.7065 | | | Pathologic T stage | <T3aa | 1 | | 1 | | ≥T3a | 5.802 (3.457-9.739) | <0.0001 | 2.344 (1.226-4.341) | 0.0067 | Pathologic N stage | N0a | 1 | | 1 | | N1 | 6.366 (3.390-11.952) | <0.0001 | 1.756 (0.880-3.502) | 0.1102 | PSM | Negativea | | | 1 | | Positive | 3.967 (2.410-6.528) | <0.0001 | 1.837 (1.052-3.207) | 0.0325 |
|
The association of possible risk factors of BCR.
|
|
The learning curve of intraoperative blood loss (A), operative time (B) and postoperative hospital stays (C).
|
|
The continence recovery rate (A) and the biochemical recurrence-free survival rate (B). BCR, biochemical recurrence.
|
[1] |
R.L. Siegel, K.D. Miller, A. Jemal. 2018. Cancer statistics, 2018. CA A Cancer J Clin, 68(2018), pp. 7-30.
|
[2] |
W. Chen, K. Sun, R. Zheng, H. Zeng, S. Zhang, C. Xia, et al. Cancer incidence and mortality in China, 2014. Chin J Canc Res, 30(2018), pp. 1-12.
|
[3] |
Mottrie P, Van Migem, G. De Naeyer, P. Schatteman, P. Carpentier, E. Fonteyne. Robot-assisted laparoscopic radical prostatectomy: oncologic and functional results of 184 cases. Eur Urol, 52(2007), pp. 746-750.
|
[4] |
V. Ficarra, G. Novara, S. Fracalanza C. D'Elia, S. Secco, M. Iafrate, , et al. A prospective, non-randomized trial comparing robot-assisted laparoscopic and retropubic radical prostatectomy in one European institution. BJU Int, 104(2009), pp. 534-539.
|
[5] |
Y.C. Ou, C.K. Yang, J. Wang, S.W. Hung, C.L. Cheng, A.K. Tewari , et al. The trifecta outcome in 300 consecutive cases of robotic-assisted laparoscopic radical prostatectomy according to D'Amico risk criteria. Eur J Surg Oncol, 39(2013), pp. 107-113.
|
[6] |
Y.C. Ou, C.R. Yang, J. Wang, C.L. Cheng, V.R. Patel. Robotic-assisted laparoscopic radical prostatectomy: learning curve of first 100 cases. Int J Urol, 17(2010), pp. 635-640.
|
[7] |
Y.C. Ou, C.R. Yang, J. Wang, C.K. Yang, C.L. Cheng, V.R. Patel , et al. The learning curve for reducing complications of robotic-assisted laparoscopic radical prostatectomy by a single surgeon. BJU Int, 108(2011), pp. 420-425.
|
[8] |
T. Hashimoto, K. Yoshioka, T. Gondo, N. Kamoda, N. Satake, C. Ozu , et al. Learning curve and perioperative outcomes of robot-assisted radical prostatectomy in 200 initial Japanese cases by a single surgeon. J Endourol, 27(2013), pp. 1218-1223.
|
[9] |
D.Y. Seo, H.J. Cho, J.M. Cho, J.Y. Kang T.K. Yoo. , Experience with robot-assisted laparoscopic radical prostatectomy at a secondary training hospital: operation time, treatment outcomes, and complications with the accumulation of experience. Korean J Urol, 54(2013), pp. 522-526.
|
[10] |
Y. Chang, M. Qu, L. Wang, B. Yang, R. Chen, F. Zhu , et al. Robotic-assisted laparoscopic radical prostatectomy from a single Chinese center: a learning curve analysis. Urology, 93(2016), pp. 104-111.
|
[11] |
Y.C. Ou, C.K. Yang, K.S. Chang, J. Wang, S.W. Hung, M.C. Tung , et al. The surgical learning curve for robotic-assisted laparoscopic radical prostatectomy: experience of a single surgeon with 500 cases in Taiwan, China. Asian J Androl, 16(2014), pp. 728-734.
|
[12] |
T. Van den Broeck, R.C.N. van den Bergh, N. Arfi, T. Gross, L. Moris, E. Briers, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: a systematic review. Eur Urol, 75(2019), pp. 967-987.
|
[13] |
Evren, A. Hac?islamo?lu M. Ek?i, A.H. Yavuzsan, F. Baytekin, Y. ?olako?lu, , et al. The impact of single positive surgical margin features on biochemical recurrence after robotic radical prostatectomy. Int Braz J Urol, 45(2019), pp. 45-53.
|
[14] |
D.A. Barocas, S. Salem, Y. Kordan, S.D. Herrell, S.S. Chang, P.E. Clark , et al. Robotic assisted laparoscopic prostatectomy versus radical retropubic prostatectomy for clinically localized prostate cancer: comparison of short-term biochemical recurrence-free survival. J Urol, 183(2010), pp. 990-996.
|
[15] |
J.A. Smith Jr., R.C. Chan, S.S. Chang, S.D. Herrell, P.E. Clark, R. Baumgartner, et al. A comparison of the incidence and location of positive surgical margins in robotic assisted laparoscopic radical prostatectomy and open retropubic radical prostatectomy. J Urol, 178(2007), pp. 2385-2389.
|
[16] |
Vickers, F. Bianco A. Cronin, J. Eastham, E. Klein, M. Kattan, , et al. The learning curve for surgical margins after open radical prostatectomy: implications for margin status as an oncological end point. J Urol, 183(2010), pp. 1360-1365.
|
[17] |
M. Liss, K. Osann, D. Ornstein. Positive surgical margins during robotic radical prostatectomy: a contemporary analysis of risk factors. BJU Int, 102(2008), pp. 603-608.
|
[18] |
F. Atug, E.P. Castle, S.K. Srivastav, S.V. Burgess, R. Thomas, R. Davis. Positive surgical margins in robotic-assisted radical prostatectomy: impact of learning curve on oncologic outcomes. Eur Urol, 49(2006), pp. 866-871.
|
[19] |
V.R. Patel, A.S. Tully, R. Holmes, J. Lindsay. Robotic radical prostatectomy in the community setting—the learning curve and beyond: initial 200 cases. J Urol, 174(2005), pp. 269-272.
|
[20] |
A.J. Vickers, F.J. Bianco, A.M. Serio, J.A. Eastham, D. Schrag, E.A. Klein , et al. The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst, 99(2007), pp. 1171-1177.
|
[21] |
T.E. Ahlering, L. Eichel, R.A. Edwards, D.I. Lee, D.W. Skarecky. Robotic radical prostatectomy: a technique to reduce pT2 positive margins. Urology, 64(2004), pp. 1224-1228.
|
[22] |
T.E. Ahlering, D. Woo, L. Eichel, D.I. Lee, R. Edwards, D.W. Skarecky. Robot-assisted versus open radical prostatectomy: a comparison of one surgeon's outcomes. Urology, 63(2004), pp. 819-822.
|
[23] |
M. Menon, A. Tewari, B. Baize, B. Guillonneau, G. Vallancien. Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti Urology Institute experience. Urology, 60(2002), pp. 864-868.
|
[24] |
F.P. Secin, C. Savage, C. Abbou A. de La Taille, L. Salomon, J. Rassweiler, , et al. The learning curve for laparoscopic radical prostatectomy: an international multicenter study. J Urol, 184(2010), pp. 2291-2296.
|
[25] |
P. Sooriakumaran, M. John, P. Wiklund, D. Lee, A. Nilsson , A.K. TewariLearning curve for robotic assisted laparoscopic prostatectomy: a multi-institutional study of 3 794 patients. Minerva Urol Nefrol, 63(2011), pp. 191-198.
|
[26] |
M. Liss, K. Osann, D. Ornstein. Positive surgical margins during robotic radical prostatectomy: a contemporary analysis of risk factors. BJU Int, 102(2008), pp. 603-608.
|
[1] |
Fubo Wang,Chao Zhang,Fei Guo,Xia Sheng,Jin Ji,Yalong Xu,Zhi Cao,Ji Lyu,Xiaoying Lu,Bo Yang. The application of virtual reality training for anastomosis during robot-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(2): 204-208. |
[2] |
Alexandria M. Hertz,Andrew W. Stamm,Mark I. Anderson,Karen C. Baker. Impact of surgical volume and resident involvement on patency rates after vasectomy reversal—A 14-year experience in an open access system[J]. Asian Journal of Urology, 2021, 8(2): 197-203. |
[3] |
Mengzhu Liu,Kun Jin,Shi Qiu,Pengyong Xu,Mingming Zhang,Wufeng Cai,Xiaonan Zheng,Lu Yang,Qiang Wei. Oncological outcomes of patients with ductal adenocarcinoma of the prostate receiving radical prostatectomy or radiotherapy[J]. Asian Journal of Urology, 2021, 8(2): 227-234. |
[4] |
Marcio Covas Moschovas,Frederico Timóteo,Leonardo Lins,Oséas de Castro Neves,Kulthe Ramesh Seetharam Bhat,Vipul R. Patel. Robotic surgery techniques to approach benign prostatic hyperplasia disease: A comprehensive literature review and the state of art[J]. Asian Journal of Urology, 2021, 8(1): 81-88. |
[5] |
Kulthe Ramesh Seetharam Bhat,Marcio Covas Moschovas,Fikret Fatih Onol,Travis Rogers,Shannon Roof,Vipul R. Patel,Oscar Schatloff. Robotic renal and adrenal oncologic surgery: A contemporary review[J]. Asian Journal of Urology, 2021, 8(1): 89-99. |
[6] |
Marcio Covas Moschovas,Kulthe Ramesh Seetharam Bhat,Fikret Fatih Onol,Travis Rogers,Gabriel Ogaya-Pinies,Shannon Roof,Vipul R. Patel. Single-port technique evolution and current practice in urologic procedures[J]. Asian Journal of Urology, 2021, 8(1): 100-104. |
[7] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[8] |
Marcio Covas Moschovas,Kulthe Ramesh Seetharam Bhat,Cathy Jenson,Vipul R. Patel,Gabriel Ogaya-Pinies. Robtic-assisted radical cystectomy: Literature review[J]. Asian Journal of Urology, 2021, 8(1): 14-19. |
[9] |
Anup Kumar,Vipul R. Patel,Sridhar Panaiyadiyan,Kulthe Ramesh Seetharam Bhat,Marcio Covas Moschovas,Brusabhanu Nayak. Nerve-sparing robot-assisted radical prostatectomy: Current perspectives[J]. Asian Journal of Urology, 2021, 8(1): 2-13. |
[10] |
Gilberto José Rodrigues,Giuliano Betoni Guglielmetti,Marcelo Orvieto,Kulthe Ramesh Seetharam Bhat,Vipul R. Patel,Rafael Ferreira Coelho. Robot-assisted endoscopic inguinal lymphadenectomy: A review of current outcomes[J]. Asian Journal of Urology, 2021, 8(1): 20-26. |
[11] |
Gilberto J. Rodrigues,Giuliano B. Guglielmetti,Marcelo Orvieto,Kulthe Ramesh Seetharam Bhat,Vipul R. Patel,Rafael F. Coelho. Robot-assisted retroperitoneal lymphadenectomy: The state of art[J]. Asian Journal of Urology, 2021, 8(1): 27-37. |
[12] |
Kulthe Ramesh Seetharam Bhat,Marcio Covas Moschovas,Vipul R. Patel,Young Hwii Ko. The robot-assisted ureteral reconstruction in adult: A narrative review on the surgical techniques and contemporary outcomes[J]. Asian Journal of Urology, 2021, 8(1): 38-49. |
[13] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[14] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[15] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
|
|
|
|