|
|
Dose escalation of external beam radiotherapy for high-risk prostate cancer—Impact of multiple high-risk factor |
Rei Umezawaa,b,*(),Koji Inabaa,Satoshi Nakamuraa,Akihisa Wakitaa,Hiroyuki Okamotoa,Keisuke Tsuchidaa,Tairo Kashiharaa,Kazuma Kobayashia,Ken Haradaa,Kana Takahashia,Naoya Murakamia,Yoshinori Itoa,Hiroshi Igakia,Keiichi Jingub,Jun Itamia
|
a.Department of Radiation Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan; b.Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan |
|
|
Abstract Objective To retrospectively investigate the treatment outcomes of external beam radiotherapy with androgen deprivation therapy (ADT) in high-risk prostate cancer in three radiotherapy dose groups.Methods Between 1998 and 2013, patients with high-risk prostate cancer underwent three-dimensional conformal radiotherapy or intensity-modulated radiotherapy of 66 Gy, 72 Gy, or 78 Gy with ADT. Prostate-specific antigen (PSA) relapse was defined using the Phoenix definition. PSA relapse-free survival (PRFS) was evaluated in each radiotherapy dose group. Moreover, high-risk patients were divided into H-1 (patients with multiple high-risk factors) and H-2 (patients with a single high-risk factor) as risk subgroups.Results Two hundred and eighty-nine patients with a median follow-up period of 77.3 months were analyzed in this study. The median duration of ADT was 10.1 months. Age, Gleason score, T stage, and radiotherapy dose influenced PRFS with statistical significance both in univariate and multivariate analyses. The 4-year PRFS rates in Group-66 Gy, Group-72 Gy and Group-78 Gy were 72.7%, 81.6% and 90.3%, respectively. PRFS rates in the H-1 subgroup differed with statistical significance with an increasing radiotherapy dose having a more favorable PRFS, while PRFS rates in H-2 subgroup did not differ with increase in radiotherapy dose.Conclusion Dose escalation for high-risk prostate cancer in combination with ADT improved PRFS. PRFS for patients in the H-1 subgroup was poor, but dose escalation in those patients was beneficial, while dose escalation in the H-2 subgroup was not proven to be effective for improving PRFS.
|
Received: 16 February 2017
Available online: 19 October 2017
|
Corresponding Authors:
Rei Umezawa
E-mail: reirei513@hotmail.com
|
|
|
Characteristic | Total | Group-66 Gy | Group-72 Gy | Group-78 Gy | p-Value | N | 289 | 73 (25) | 173 (60) | 43 (15) | | Median follow-up period (month) | 77.3 | 102.4 | 84.1 | 48.1 | | Age at radiotherapy | | | | | 0.899 | Median (year) | 72 | 72 | 72 | 70 | | ≤70 years | 115 (40) | 26 (36) | 66 (38) | 23 (53) | | >70 years | 174 (60) | 47 (64) | 107 (62) | 20 (47) | | Initial PSA | | | | | 0.902 | Median (ng/mL) | 21.2 | 21.5 | 20.9 | 23.6 | | ≤20 ng/mL | 129 (45) | 34 (47) | 76 (44) | 19 (44) | | >20 ng/mL | 160 (55) | 39 (53) | 97 (56) | 24 (56) | | Gleason score | | | | | <0.001 | 6-7 | 147 (51) | 49 (67) | 73 (42) | 25 (58) | | 8-10 | 139 (48) | 22 (30) | 99 (57) | 18 (42) | | Unknown | 3 (1) | 2 (3) | 1 (1) | 0 (0) | | T stage | | | | | <0.001 | T1-2 | 65 (22) | 6 (8) | 45 (26) | 14 (33) | | T3-4 | 223 (77) | 67 (92) | 127 (73) | 29 (67) | | Unknown | 1 (1) | 0 (0) | 1 (1) | 0 (0) | | Risk subgroup | | | | | 0.44 | H-1 | 184 (64) | 47 (64) | 113 (65) | 24 (56) | | H-2 | 101 (35) | 24 (33) | 58 (33) | 19 (44) | | Unknown | 4 (1) | 2 (33) | 2 (33) | 0 (0) | | Length of ADT | | | | | <0.001 | Median (month) | 10.1 | 12.2 | 9.3 | 8.1 | | ≤12 months | 184 (64) | 32 (44) | 122 (71) | 30 (70) | | >12 months | 105 (36) | 41 (56) | 51 (29) | 13 (30) | | IMRT | 90 (31) | 0 (0) | 47 (27) | 43 (100) | <0.001 | Whole pelvis irradiation | | | | | <0.001 | + | 159 (55) | 59 (81) | 81 (47) | 19 (44) | | - | 130 (45) | 14 (19) | 92 (53) | 24 (56) | |
|
Patients' characteristics of each radiotherapy dose group.
|
| 4-year PRFS rate (%) (95% CI) | 4-year DMFS rate (%) (95% CI) | 4-year CSS rate (%) (95% CI) | 4-year OS rate (%) (95% CI) | 7-year PRFS rate (%) (95% CI) | 7-year DMFS rate (%) (95% CI) | 7-year CSS rate (%) (95% CI) | 7-year OS rate (%) (95% CI) | All patients | 80.5 (75.3-84.8) | 94.2 (90.8-96.4) | 97.0 (94.1-98.5) | 96.3 (93.2-98.0) | 66.3 (59.7-72.4) | 89.7 (84.8-93.1) | 94.3 (90.4-96.7) | 90.5 (85.7-93.8) | H-1 | 74.3 (67.2-80.3) | 92.6 (87.7-95.7) | 95.8 (91.4-98.0) | 94.7 (90.1-97.2) | 57.4 (48.9-65.5) | 87.4 (80.8-91.9) | 91.8 (85.9-95.3) | 88.2 (81.6-92.6) | Intermediate risk | 84.6 (73.7-91.6) | 97.0 (88.8-99.3) | 98.5 (90.2-99.8) | 96.9 (88.6-99.2) | 65.2 (51.1-77.1) | 94.2 (82.7-98.2) | 96.8 (88.0-99.2) | 92.4 (80.8-97.3) | Poor risk | 69.1 (59.7-77.1) | 90.0 (82.5-94.3) | 94.1 (87.5-97.3) | 93.3 (86.4-96.7) | 52.7 (42.0-63.1) | 83.0 (73.7-89.5) | 88.7 (80.0-93.9) | 83.8 (74.2-90.3) | H-2 | 91.6 (84.0-95.7) | 97.9 (92.2-99.5) | 100 | 100 | 83.7 (73.3-90.6) | 96.3 (88.6-98.8) | 100 | 95.4 (86.5-98.5) |
|
Prostate-specific antigen relapse-free survival (PRFS), distant metastases-free survival (DMFS), cause-specific survival (CSS) and overall survival (OS) of each subgroup.
|
|
Prostate-specific antigen relapse-free survival (PRFS) in all patients (A) and in each radiotherapy dose group (B).
|
Factor | 4-year PRFS rate (%) (95% CI) | p-Value | UA | MA | Age at radiotherapy | | 0.004 | 0.028 | ≤70 years | 72.1 (63.1-79.7) | | | >70 years | 86.3 (80.0-90.8) | | | Initial PSA | | 0.38 | NA | ≤20 ng/mL | 81.2 (77.3-87.2) | | | >20 ng/mL | 79.9 (71.8-85.0) | | | Gleason score | | 0.002 | <0.001 | 6-7 | 88.2 (81.5-92.6) | | | 8-10 | 73.0 (64.8-79.8) | | | T stage | | 0.005 | 0.010 | T1-2 | 88.6 (77.9-94.5) | | | T3-4 | 78.4 (72.3-83.5) | | | Radiotherapy dose | | 0.036* | 0.039 | 66 Gy | 72.7 (61.1-81.9) | | | 72 Gy | 81.6 (74.8-86.8) | | | 78 Gy | 90.3 (76.8-96.3) | | | Length of ADT | | 0.08 | NA | ≤12 months | 82.8 (76.5-87.7) | | | >12 months | 76.3 (66.8-83.8) | | | Whole pelvis irradiation | | 0.002 | 0.32 | + | 75.2 (67.7-81.6) | | | - | 86.9 (79.7-91.8) | | |
|
Results of univariate and multivariate analyses of prostate-specific antigen relapse-free survival.
|
Risk subgroup | 4-year PRFS rate (%) (95% CI) | 4-year DMFS rate (%) (95% CI) | 4-year CSS rate (%) (95% CI) | 4-year OS rate (%) (95% CI) | H-1 | p = 0.020* | p = 0.686 | p = 0.118 | p = 0.070 | Group-66 Gy | 59.9 (45.0-73.1) | 88.8 (75.7-85.3) | 93.5 (81.6-97.9) | 91.3 (78.9-96.7) | Group-72 Gy | 78.3 (69.3-85.1) | 92.3 (85.3-96.1) | 96.0 (90.0-98.5) | 96.0 (89.8-98.5) | Group-78 Gy | 91.1 (70.5-97.8) | 95.4 (73.8-99.4)a | 100a | 100 | H-2 | p = 0.604** | p = 0.383 | p = 0.735 | p = 0.887 | Group-66 Gy | 86.3 (65.2-95.5) | 100 | 100 | 100 | Group-72 Gy | 88.5 (76.6-94.8) | 98.3 (88.8-99.8) | 100 | 100 | Group-78 Gy | 94.4 (69.3-99.2) | 94.7 (70.6-99.2) | 100 | 100 |
|
PRFS, DMFS, CSS, and OS of risk subgroups according to radiotherapy dose group.
|
|
Prostate-specific antigen relapse-free survival (PRFS) in each radiotherapy dose group for H-1 patients (patients with multiple high-risk factors) (A) and H-2 patients (patients with a single high-risk factor) (B).
|
| Grade 2 | Grade 3 | Grade 4 | Grade 5 | Genitourinary | Group-66 Gy | 3 (4.1) | 0 (0) | 0 (0) | 0 (0) | Group-72 Gy | 4 (2.3) | 4 (2.3) | 0 (0) | 0 (0) | Group-78 Gy | 0 (0) | 0 (0) | 0 (0) | 0 (0) | Gastrointestinal | Group-66 Gy | 0 (0) | 0 (0) | 0 (0) | 0 (0) | Group-72 Gy | 6 (3.5) | 1 (0.1) | 1 (0.1) | 0 (0) | Group-78 Gy | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
|
Incidence of late toxicities (n [%]) according to the common terminology criteria for adverse events ver. 4.
|
[1] |
D.A. Kuban, S.L. Tucker, L. Dong, G. Starkschall, E.H. Huang, M.R. Cheung , et al.Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer.Int J Radiat Oncol Biol Phys, 70(2008), pp. 67-74.
|
[2] |
S.T. Peeters, W.D. Heemsbergen, P.C. Koper , W.L. van Putten, A. Slot, M.F. Dielwart, et al.Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy.J Clin Oncol, 24(2006), pp. 1990-1996.
|
[3] |
D.P. Dearnaley, M.R. Sydes, J.D. Graham, E.G. Aird, D. Bottomley, R.A. Cowan , et al.Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial.Lancet Oncol, 8(2007), pp. 475-487.
|
[4] |
J. Michalski, K. Winter, M. Roach, A. Markoe, H.M. Sandler, J. Ryu , et al.Clinical outcome of patients treated with 3D conformal radiation therapy (3D-CRT) for prostate cancer on RTOG 9406.Int J Radiat Oncol Biol Phys, 83 (2012), pp. e363-e370,http://doi.org/10.1016/j.ijrobp.2011.12.070 .
|
[5] |
M.J. Zelefsky, Y. Yamada, Z. Fuks, Z. Zhang, M. Hunt, O. Cahlon , et al.Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes.Int J Radiat Oncol Biol Phys, 71(2008), pp. 1028-1033.
|
[6] |
V. Beckendorf, S. Guerif, E. Le Prise, J.M. Cosset, A. Bougnoux, B. Chauvet , et al.70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial.Int J Radiat Oncol Biol Phys, 80(2011), pp. 1056-1063.
|
[7] |
A. Pollack, G.K. Zagars, G. Starkschall, J.A. Antolak, J.J. Lee, E. Huang , et al.Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial.Int J Radiat Oncol Biol Phys, 53(2002), pp. 1097-1105.
|
[8] |
M.J. Zelefsky, X. Pei, J.F. Chou, M. Schechter, M. Kollmeier, B. Cox , et al.Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes.Eur Urol, 60(2011), pp. 1133-1139.
|
[9] |
J.M. Michalski, Y. Yan, D. Watkins-Bruner, W.R. Bosch, K. Winter, J.M. Galvin , et al.Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the radiation therapy oncology group Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the radiation therapy oncology group 0126 prostate cancer trial. Int J Radiat Oncol Biol Phys, 87(2013), pp. 932-938.
|
[10] |
S.A. Vora, W.W. Wong, S.E. Schild, G.A. Ezzell ,M.Y. Halyard.Analysis of biochemical control and prognostic factors in patients treated with either low-dose three-dimensional conformal radiation therapy or high-dose intensity-modulated radiotherapy for localized prostate cancer.Int J Radiat Oncol Biol Phys, 68(2007), pp. 1053-1058.
|
[11] |
N.K. Sharma, T. Li, D.Y. Chen, A. Pollack, E.M. Horwitz ,M.K.Buyyounouski.Intensity-modulated radiotherapy reduces gastrointestinal toxicity in patients treated with androgen deprivation therapy for prostate cancer.Int J Radiat Oncol Biol Phys, 80(2011), pp. 437-444.
|
[12] |
M. Sumi, H. Ikeda, K. Tokuuye, Y. Kagami, S. Murayama, K. Tobisu , et al.The external radiotherapy with three-dimensional conformal boost after the neoadjuvant androgen suppression for patients with locally advanced prostatic carcinoma.Int J Radiat Oncol Biol Phys, 48(2000), pp. 519-528.
|
[13] |
M. Roach 3rd, G. Hanks, H. Thames Jr., P. Schellhammer, W.U. Shipley, G.H. Sokol, et al.Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO phoenix consensus conference.Int J Radiat Oncol Biol Phys, 65(2006), pp. 965-974.
|
[14] |
S. Joniau, A. Briganti, P. Gontero, G. Gandaglia, L. Tosco, S. Fieuws , et al.Stratification of high-risk prostate cancer into prognostic categories: a European multi-institutional study.Eur Urol, 67(2015), pp. 157-164.
|
[15] |
M.V. Pilepich, K. Winter, C.A. Lawton, R.E. Krisch, H.B. Wolkov, B. Movsas , et al.Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma - long-term results of phase III RTOG 85-31.Int J Radiat Oncol Biol Phys, 61(2005), pp. 1285-1290.
|
[16] |
M. Bolla, G. Van Tienhoven, P. Warde, J.B. Dubois, R.O. Mirimanoff, G. Storme , et al.External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study.Lancet Oncol, 11(2010), pp. 1066-1073.
|
[17] |
A.V. D'Amico, M.H. Chen, A.A. Renshaw, M. Loffredo, P.W. Kantoff.Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial.JAMA, 299(2008), pp. 289-295.
|
[18] |
J.W. Denham, A. Steigler, D.S. Lamb, D. Joseph, S. Turner, J. Matthews , et al.Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial.Lancet Oncol, 12(2011), pp. 451-459.
|
[19] |
A.L. Zietman, K. Bae, J.D. Slater, W.U. Shipley, J.A. Efstathiou, J.J. Coen , et al.Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/American college of radiology 95-09.J Clin Oncol, 28(2010), pp. 1106-1111.
|
[20] |
M.J. Zelefsky, Y. Yamada, M.A. Kollmeier, A.M. Shippy , M.A. Nedelka. Long-term outcome following three-dimensional conformal/intensity-modulated external-beam radiotherapy for clinical stage T3 prostate cancer.Eur Urol, 53(2008), pp. 1172-1179.
|
[21] |
S. Williams, M. Buyyounouski, L. Kestin, G. Duchesne , T. Pickles..Predictors of androgen deprivation therapy efficacy combined with prostatic irradiation: the central role of tumor stage and radiation dose.Int J Radiat Oncol Biol Phys, 79(2011), pp. 724-731.
|
[22] |
F.Y. Feng, K. Blas, K. Olson, M. Stenmark, H. Sandler ,D.A. Hamstra.Retrospective evaluation reveals that long-term androgen deprivation therapy improves cause-specific and overall survival in the setting of dose-escalated radiation for high-risk prostate cancer.Int J Radiat Oncol Biol Phys, 86(2013), pp. 64-71.
|
[23] |
A. Zapatero, A. Guerrero, X. Maldonado, A. Alvarez ,C. Gonzalez San Segundo, M.A. Cabeza Rodriguez, et al.High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial.Lancet Oncol, 16(2015), pp. 320-327.
|
[24] |
J. Walz, S. Joniau, F.K. Chun, H. Isbarn, C. Jeldres, O. Yossepowitch , et al.Pathological results and rates of treatment failure in high-risk prostate cancer patients after radical prostatectomy.BJU Int, 107(2011), pp. 765-770.
|
[25] |
D.A. Wattson, M.H. Chen, J.W. Moul, B.J. Moran, D.E. Dosoretz, C.N. Robertson , et al.The number of high-risk factors and the risk of prostate cancer-specific mortality after brachytherapy: implications for treatment selection.Int J Radiat Oncol Biol Phys, 82(2012), pp. e773-e779,http://doi.org/10.1016/j.ijrobp.2011.11.023 .
|
[26] |
M.H. Stenmark, K. Blas, S. Halverson, H.M. Sandler, F.Y. Feng ,D.A. Hamstra.Continued benefit to androgen deprivation therapy for prostate cancer patients treated with dose-escalated radiation therapy across multiple definitions of high-risk disease.Int J Radiat Oncol Biol Phys, 81(2011), pp. e335-e344,http://doi.org/10.1016/j.ijrobp.2011.04.037 .
|
[27] |
M. Bolla, P. Maingon, C. Carrie, S. Villa, P. Kitsios, P.M. Poortmans , et al.Short androgen suppression and radiation dose escalation for intermediate- and high-risk localized prostate cancer: results of EORTC trial 22991.J Clin Oncol, 34(2016), pp. 1748-1756.
|
[28] |
V. Muralidhar, M.H. Chen, G. Reznor, B.J. Moran, M.H. Braccioforte, C.J. Beard , et al.Definition and validation of “favorable high-risk prostate cancer”: implications for personalizing treatment of radiation-managed patients.Int J Radiat Oncol Biol Phys, 93(2015), pp. 828-835.
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[3] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[4] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[5] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[6] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[7] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[8] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[9] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[10] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[11] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[12] |
Jean-Luc Descotes. Diagnosis of prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 129-136. |
[13] |
Hendrik van Poppel,Wouter Everaerts,Lorenzo Tosco,Steven Joniau. Open and robotic radical prostatectomy[J]. Asian Journal of Urology, 2019, 6(2): 125-128. |
[14] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
[15] |
Laurence Klotz. Contemporary approach to active surveillance for favorable risk prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 146-152. |
|
|
|
|