|
|
Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer |
Lingfan Xua,b,Junyi Chenc,Weipeng Liud,Chaozhao Lianga,Hailiang Hub,Jiaoti Huangb,*()
|
a Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China b Department of Pathology, Duke University School of Medicine, Durham, NC, USA c Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China d Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China |
|
|
Abstract Since androgen receptor (AR) signaling is critically required for the development of prostate cancer (PCa), targeting AR axis has been the standard treatment of choice for advanced and metastatic PCa. Unfortunately, although the tumor initially responds to the therapy, treatment resistance eventually develops and the disease will progress. It is therefore imperative to identify the mechanisms of therapeutic resistance and novel molecular targets that are independent of AR signaling. Recent advances in pathology, molecular biology, genetics and genomics research have revealed novel AR-independent pathways that contribute to PCa carcinogenesis and progression. They include neuroendocrine differentiation, cell metabolism, DNA damage repair pathways and immune-mediated mechanisms. The development of novel agents targeting the non-AR mechanisms holds great promise to treat PCa that does not respond to AR-targeted therapies.
|
Received: 06 September 2018
Available online: 28 November 2018
|
Corresponding Authors:
Jiaoti Huang
E-mail: jiaoti.huang@duke.edu
|
|
|
[1] |
Siegel RL, Miller KD, Jemal A . Cancer statistics, 2017. CA Cancer J Clin 2017; 67:7-30.
doi: 10.3322/caac.21387
|
[2] |
Lipianskaya J, Cohen A, Chen CJ, Hsia E, Squires J, Li Z , et al. Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. Asian J Androl 2014; 16:541-4.
doi: 10.4103/1008-682X.123669
|
[3] |
Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez- Lopez S, Tharakan R , et al. Androgen receptor pathwayindependent prostate cancer is sustained through FGF signaling. Cancer Cell 2017; 32: 474-89. e6.
doi: 10.1016/j.ccell.2017.09.003
|
[4] |
Feng N, Yin Y, He Y, Huang J . Alternative splicing provides a novel molecular mechanism for prostatic small-cell neuroendocrine carcinoma. Eur Urol 2017; 71:79-80.
doi: 10.1016/j.eururo.2016.07.046
|
[5] |
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J , et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22:298-305.
|
[6] |
Aparicio A, Logothetis CJ, Maity SN . Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov 2011; 1:466-8.
doi: 10.1158/2159-8290.CD-11-0259
|
[7] |
Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY , et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 2011; 1:487-95.
doi: 10.1158/2159-8290.CD-11-0130
|
[8] |
Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J , et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res 2014; 20:890-903.
doi: 10.1158/1078-0432.CCR-13-1982
|
[9] |
Chen H, Sun Y, Wu C, Magyar CE, Li X, Cheng L , et al. Pathogenesis of prostatic small cell carcinoma involves the inactivation of the P53 pathway. Endocr Relat Cancer 2012; 19:321-31.
doi: 10.1530/ERC-11-0368
|
[10] |
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM , et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161:1215-28.
doi: 10.1016/j.cell.2015.05.001
|
[11] |
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC , et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer. Science 2017; 355:84-8.
doi: 10.1126/science.aah4307
|
[12] |
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW , et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017; 355:78-83.
doi: 10.1126/science.aah4199
|
[13] |
Iannetti A, Ledoux AC, Tudhope SJ, Sellier H, Zhao B, Mowla S , et al. Regulation of p53 and Rb links the alternative NF-kB pathway to EZH2 expression and cell senescence. PLoS Genet 2014; 10:e1004642.
doi: 10.1371/journal.pgen.1004642
|
[14] |
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L , et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 2016; 30:563-77.
doi: 10.1016/j.ccell.2016.09.005
|
[15] |
Zhang W, Liu B, Wu W, Li L, Broom BM, Basourakos SP , et al. Targeting the MYCNePARPeDNA damage response pathway in neuroendocrine prostate cancer. Clin Cancer Res 2018; 24:696-707.
doi: 10.1158/1078-0432.CCR-17-1872
|
[16] |
Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR, Mak TW . Targeting mitosis in cancer: emerging strategies. Mol Cell 2015; 60:524-36.
doi: 10.1016/j.molcel.2015.11.006
|
[17] |
Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST , et al. Concurrent AURKA and MYCN gene amplifi- cations are harbingers of lethal treatment related neuroendocrine prostate cancer. Neoplasia 2013; 15:IN1-4.
doi: 10.1593/neo.121550
|
[18] |
Akamatsu S, Inoue T, Ogawa O, Gleave ME . Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018; 25:345-51.
doi: 10.1111/iju.2018.25.issue-4
|
[19] |
McKeown MR, Bradner JE . Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 2014; 4:a014266.
|
[20] |
Chen R, Dong X, Gleave M . Molecular model for neuroendocrine prostate cancer progression. BJU Int 2018; 122:560-70.
doi: 10.1111/bju.2018.122.issue-4
|
[21] |
Fritz V, Benfodda Z, Henriquet C, Hure S, Cristol JP, Michel F , et al. Metabolic intervention on lipid synthesis converging pathways abrogates prostate cancer growth. Oncogene 2013; 32:5501-10.
|
[22] |
Liu Y, Zuckier LS, Ghesani NV . Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res 2010; 30:369-74.
|
[23] |
Zacharias NM, McCullough C, Shanmugavelandy S, Lee J, Lee Y, Dutta P , et al. Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci Rep 2017; 7:16159.
doi: 10.1038/s41598-017-16327-z
|
[24] |
Li W, Cohen A, Sun Y, Squires J, Braas D, Graeber TG , et al. The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma. Mol Cancer Res 2016; 14:344-53.
doi: 10.1158/1541-7786.MCR-15-0466
|
[25] |
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM . The role of androgen receptor in glucose transporters expression in prostate cancer cells. Endocr Abstr 2015; 37. GP30.03, https://www.endocrine-abstracts.org/ea/0037/ea0037GP.30.03. [Accessed 19 November 2018].
|
[26] |
Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L , et al. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 2015; 236:278-89.
doi: 10.1002/path.4518
|
[27] |
Warburg O . On the origin of cancer cells. Science 1956; 123:309-14.
doi: 10.1126/science.123.3191.309
|
[28] |
Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-33.
doi: 10.1126/science.1160809
|
[29] |
Bergstr?m J, Fürst P, Noree L, Vinnars E . Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 1974; 36:693-7.
doi: 10.1152/jappl.1974.36.6.693
|
[30] |
Hensley CT, Wasti AT , DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123:3678-84.
doi: 10.1172/JCI69600
|
[31] |
Wise DR, Thompson CB . Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35:427-33.
doi: 10.1016/j.tibs.2010.05.003
|
[32] |
Strickaert A, Saiselet M, Dom G, De Deken X, Dumont J, Feron O , et al. Cancer heterogeneity is not compatible with one unique cancer cell metabolic map. Oncogene 2017; 36:2637-42.
|
[33] |
Jadvar H . PET of glucose metabolism and cellular proliferation in prostate cancer. J Nucl Med 2016; 57:25S-9S.
doi: 10.2967/jnumed.115.170704
|
[34] |
Vaz CV, Alves MG, Marques R, Moreira PI, Oliveira PF, Maia CJ , et al. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int J Biochem Cell Biol 2012; 44:2077-84.
doi: 10.1016/j.biocel.2012.08.013
|
[35] |
Gonzalez-Menendez P, Hevia D, Mayo JC, Sainz RM . The dark side of glucose transporters in prostate cancer: are they a new feature to characterize carcinomas? Int J Cancer 2018; 142:2414-24.
doi: 10.1002/ijc.v142.12
|
[36] |
Stewart GD, Gray K, Pennington CJ, Edwards DR, Riddick AC, Ross JA , et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol Rep 2008; 20:1561-7.
|
[37] |
Ibrahim-Hashim A, Abrahams D, Enriquez-Navas PM, Luddy K, Gatenby RA, Gillies RJ . Trisebase buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 2017; 6:1720-9.
doi: 10.1002/cam4.2017.6.issue-7
|
[38] |
Ruiz-Pérez MV, Sanchez-Jimenez F, Alonso FJ, Segura JA, Marquez J, Medina M . Glutamine, glucose and other fuels for cancer. Curr Pharm Des 2014; 20:2557-79.
doi: 10.2174/13816128113199990482
|
[39] |
Lu W, Pelicano H, Huang P . Cancer metabolism: is glutamine sweeter than glucose? Cancer Cell 2010; 18:199-200.
doi: 10.1016/j.ccr.2010.08.017
|
[40] |
Zimmermann SC, Wolf EF, Luu A, Thomas AG, Stathis M, Poore B , et al. Allosteric glutaminase inhibitors based on a 1,4-Di(5-amino-1,3,4-thiadiazol-2-yl)butane scaffold. ACS Med Chem Lett 2016; 7:520-4.
doi: 10.1021/acsmedchemlett.6b00060
|
[41] |
McDermott LA, Iyer P, Vernetti L, Rimer S, Sun J, Boby M , et al. Design and evaluation of novel glutaminase inhibitors. Bioorg Med Chem 2016; 24:1819-39.
doi: 10.1016/j.bmc.2016.03.009
|
[42] |
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B , et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 2014; 13:890-901.
doi: 10.1158/1535-7163.MCT-13-0870
|
[43] |
Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST , et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 2018; 24:194-202.
doi: 10.1038/nm.4464
|
[44] |
Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z , et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 2015; 27:257-70.
doi: 10.1016/j.ccell.2014.12.006
|
[45] |
Li C, Li M, Chen P, Narayan S, Matschinsky FM, Bennett MJ , et al. Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 2011; 286:34164-74.
doi: 10.1074/jbc.M111.268599
|
[46] |
Li C, Allen A, Kwagh J, Doliba NM, Qin W, Najafi H , et al. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 2006; 281:10214-21.
doi: 10.1074/jbc.M512792200
|
[47] |
Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A , et al. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 2008; 10:R84.
doi: 10.1186/bcr2154
|
[48] |
Korangath P, Teo WW, Sadik H, Han L, Mori N, Huijts CM , et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res 2015; 21:3263-73.
doi: 10.1158/1078-0432.CCR-14-1200
|
[49] |
Galbraith L, Leung HY, Ahmad I . Lipid pathway deregulation in advanced prostate cancer. Pharmacol Res 2018; 131:177-84.
doi: 10.1016/j.phrs.2018.02.022
|
[50] |
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B , et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 2014; 19:393-406.
doi: 10.1016/j.cmet.2014.01.019
|
[51] |
Shao W, Espenshade PJ . Expanding roles for SREBP in metabolism. Cell Metab 2012; 16:414-9.
doi: 10.1016/j.cmet.2012.09.002
|
[52] |
Nohturfft A, Zhang SC . Coordination of lipid metabolism in membrane biogenesis. Annu Rev Cell Dev Biol 2009; 25:539-66.
doi: 10.1146/annurev.cellbio.24.110707.175344
|
[53] |
Nambiar DK, Deep G, Singh RP, Agarwal C, Agarwal R . Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1. Oncotarget 2014; 5:10017-33.
|
[54] |
Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM . The metabolic phenotype of prostate cancer. Front Oncol 2017; 7:131.
doi: 10.3389/fonc.2017.00131
|
[55] |
Kuhajda FP . Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 2006; 66:5977-80.
doi: 10.1158/0008-5472.CAN-05-4673
|
[56] |
Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA . Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci USA 2000; 97:3450-4.
doi: 10.1073/pnas.97.7.3450
|
[57] |
Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L . Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNAprocessing pathways. Curr Genet 2018; 64:971-83.
doi: 10.1007/s00294-018-0819-7
|
[58] |
Tubbs A, Nussenzweig A . Endogenous DNA damage as a source of genomic instability in cancer. Cell 2017; 168:644-56.
doi: 10.1016/j.cell.2017.01.002
|
[59] |
Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K , et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434:864.
|
[60] |
Bartek J, Lukas J, Bartkova J . DNA damage response as an anti-cancer barrier: damage threshold and the concept of ‘conditional haplo insufficiency’. Cell Cycle 2007; 6:2344-7.
doi: 10.4161/cc.6.19.4754
|
[61] |
Schweizer MT, Antonarakis ES . Prognostic and therapeutic implications of DNA repair gene mutations in advanced prostate cancer. Clin Adv Hematol Oncol 2017; 15:785-95.
|
[62] |
Kote-Jarai Z, Jugurnauth S, Mulholland S, Leongamornlert D, Guy M, Edwards S , et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br J Cancer 2009; 100:426-30.
|
[63] |
Leongamornlert D, Saunders E, Dadaev T, Tymrakiewicz M, Goh C, Jugurnauth-Little S , et al. Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 2014; 110:1663-72.
|
[64] |
Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP , et al. The mutational landscape of lethal castrationresistant prostate cancer. Nature 2012; 487:239-43.
doi: 10.1038/nature11125
|
[65] |
Taylor RA, Fraser M, Livingstone J, Espiritu SMG, Thorne H, Huang V , et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun 2017; 8:13671.
doi: 10.1038/ncomms13671
|
[66] |
Schiewer MJ, Knudsen KE . DNA damage response in prostate cancer. Cold Spring Harb Perspect Med 2018: a030486.
|
[67] |
Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY , et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 2013; 63:920-6.
doi: 10.1016/j.eururo.2012.08.053
|
[68] |
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez- Lopez R , et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015; 373:1697-708.
doi: 10.1056/NEJMoa1506859
|
[69] |
Shenoy T, Boysen G, Wang M, Xu Q, Guo W, Koh F , et al. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol 2017; 28:1495-507.
doi: 10.1093/annonc/mdx165
|
[70] |
Mulders PF, De Santis M, Powles T, Fizazi K . Targeted treatment of metastatic castration-resistant prostate cancer with sipuleucel-T immunotherapy. Cancer Immunol Immunother 2015; 64:655-63.
doi: 10.1007/s00262-015-1707-3
|
[71] |
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF , et al. Sipuleucel-T immunotherapy for castrationresistant prostate cancer. N Engl J Med 2010; 363:411-22.
doi: 10.1056/NEJMoa1001294
|
[72] |
Pollard ME, Moskowitz AJ, Diefenbach MA, Hall SJ . Costeffectiveness analysis of treatments for metastatic castration resistant prostate cancer. Asian J Urol 2017; 4:37-43.
doi: 10.1016/j.ajur.2016.11.005
|
[73] |
Cordes LM, Gulley JL, Madan RA . Perspectives on the clinical development of immunotherapy in prostate cancer. Asian J Androl 2018; 20:253-9.
doi: 10.4103/aja.aja_9_18
|
[74] |
Fankhauser CD, Schuffler PJ, Gillessen S, Omlin A, Rupp NJ, Rueschoff JH , et al. Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castrationresistant prostate cancer. Oncotarget 2018; 9:10284-93.
|
[75] |
Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T , et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin Cancer Res 2016; 22:1969-77.
doi: 10.1158/1078-0432.CCR-15-2042
|
[76] |
Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN , et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 2015; 6:234.
|
[77] |
Hansen A, Massard C, Ott P, Haas N, Lopez J, Ejadi S , et al. Pembrolizumab for patientswith advanced prostate adenocarcinoma: preliminary results from the KEYNOTE-028 study. Ann Oncol 2016; 27(suppl 6). https://doi.org/10.1093/annonc/mdw372.09.
|
[78] |
Schepisi G, Farolfi A, Conteduca V, Martignano F, De Lisi D, Ravaglia G , et al. Immunotherapy for prostate cancer: where we are headed. Int J Mol Sci 2017; 18. https://doi.org/ 10.3390/ijms18122627.E2627.
|
[79] |
Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF . Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 2008; 26:242-5.
doi: 10.1200/JCO.2007.12.4008
|
[80] |
De Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I , et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010; 376:1147-54.
doi: 10.1016/S0140-6736(10)61389-X
|
[81] |
Corn PG, Agarwal N, Araujo JC, Sonpavde G . Taxane-based combination therapies for metastatic prostate cancer. Eur Urol Focus 2017. https://doi.org/10.1016/j.euf.2017.11.009.
|
[82] |
Antonarakis ES, Tagawa ST, Galletti G, Worroll D, Ballman K, Vanhuyse M , et al. Randomized, noncomparative, phase II trial of early switch from docetaxel to cabazitaxel or vice versa, with integrated biomarker analysis, in men with chemotherapy-naive, metastatic, castration-resistant prostate cancer. J Clin Oncol 2017; 35:3181-8.
doi: 10.1200/JCO.2017.72.4138
|
[83] |
Ross RW, Beer TM, Jacobus S, Bubley GJ, Taplin ME, Ryan CW , et al. A phase 2 study of carboplatin plus docetaxel in men with metastatic hormone-refractory prostate cancer who are refractory to docetaxel. Cancer 2008; 112:521-6.
doi: 10.1002/(ISSN)1097-0142
|
[84] |
Hoskin P, Sartor O, O’Sullivan JM, Johannessen DC, Helle SI, Logue J , et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol 2014; 15:1397-406.
doi: 10.1016/S1470-2045(14)70474-7
|
[85] |
Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD , et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369:213-23.
doi: 10.1056/NEJMoa1213755
|
[86] |
Saad F, Carles J, Gillessen S, Heidenreich A, Heinrich D, Gratt J , et al. Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol 2016; 17:1306-16.
doi: 10.1016/S1470-2045(16)30173-5
|
[87] |
Ritter MA, Cleaver JE, Tobias CA . High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 1977; 266:653-5.
|
[88] |
Isaacsson Velho P, Qazi F, Hassan S, Carducci MA, Denmeade SR, Markowski MC , et al. Efficacy of radium-223 in bone-metastatic castration-resistant prostate cancer with and without homologous repair gene defects. Eur Urol 2018. https: //doi.org/10.1016/j.eururo.2018.09.040.
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Renee E. Vickman,Omar E. Franco,Daniel C. Moline,Donald J. Vander Griend,Praveen Thumbikat,Simon W. Hayward. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review[J]. Asian Journal of Urology, 2020, 7(3): 191-202. |
[3] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[4] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[5] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[6] |
Chui Yan Mah,Zeyad D. Nassar,Johannes V. Swinnen,Lisa M. Butler. Lipogenic effects of androgen signaling in normal and malignant prostate[J]. Asian Journal of Urology, 2020, 7(3): 258-270. |
[7] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[8] |
Abhishek Tripathi,Shilpa Gupta. Androgen receptor in bladder cancer: A promising therapeutic target[J]. Asian Journal of Urology, 2020, 7(3): 284-290. |
[9] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[10] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[11] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[12] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[13] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[14] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[15] |
Gwenaelle Gravis. Systemic treatment for metastatic prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 162-168. |
|
|
|
|