|
|
Prostate tumor neuroendocrine differentiation via EMT: The road less traveled |
Haley Dickena,b,Patrick J. Hensleya,Natasha Kyprianoua,b,c,*()
|
a Department of Urology, University of Kentucky College of Medicine, Lexington, KY, USA b Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA c Department of Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA |
|
|
Abstract The long-standing challenge in the treatment of prostate cancer is to overcome therapeutic resistance during progression to lethal disease. Aberrant transforming-growth factor-β (TGF-β) signaling accelerates prostate tumor progression in a transgenic mouse model via effects on epithelial-mesenchymal transition (EMT), and neuroendocrine differentiation driving tumor progression to castration-resistant prostate cancer (CRPC). Neuroendocrine prostate cancer (NEPC) is highly aggressive exhibiting reactivation of developmental programs associated with EMT induction and stem cell-like characteristics. The androgen receptor (AR) is a critical driver of tumor progression as well as therapeutic response in patients with metastatic CRPC. The signaling interactions between the TGF-β mechanistic network and AR axis impact the EMT phenotypic conversions, and perturbation of epithelial homeostasis via EMT renders a critical venue for epithelial derived tumors to become invasive, acquire the neuroendocrine phenotype, and rapidly metastasize. Combinations of microtubule targeting taxane chemotherapy and androgen/AR targeting therapies have survival benefits in CRPC patients, but therapeutic resistance invariability develops, leading to mortality. Compelling evidence from our group recently demonstrated that chemotherapy (cabazitaxel, second line taxane chemotherapy), or TGF-β receptor signaling targeted therapy, caused reversion of EMT to mesenchymal-epithelial transition and tumor re-differentiation, in in vitro and in vivo prostate cancer models. In this review, we discuss the functional contribution of EMT dynamic changes to the development of the neuroendocrine phenotype—the newly characterized pathological feature of prostate tumors in the context of the tumor microenvironment-navigated cell lineage changes and the role of this neuroendocrine phenotype in metastatic progression and therapeutic resistance.
|
Received: 13 June 2018
Available online: 17 November 2018
|
Corresponding Authors:
Natasha Kyprianou
E-mail: nkypr2@uky.edu
|
|
|
|
Histopathological characteristics of neuroendocrine prostate cancer. (A) A representative H-E section of a human prostatectomy specimen from a 57-year-old male with PSA 3.4 ng/mL diagnosed with NEPC. Neuroendocrine cells are pathologically small, round epithelial cells that contain irregular nuclei and reduced cytoplasmic granularity; (B) and (C) Images of prostate tumor sections from the TRAMP mouse model tumors at 20 weeks and 34 weeks respectively exhibiting a characteristic progressive spectrum of neuroendocrine differentiation. PSA, prostate-specific antigen; NEPC, neuroendocrine prostate cancer; TRAMP, transgenic mouse of adenocarcinoma of the prostate.
|
|
Progression of primary prostate adenocarcinoma to NEPC and EMT-navigated metastatic prostate cancer follows diverse differentiation spectra. Normal epithelial cells may undergo EMT via loss of basoapical polarity and creating a more irregularly shaped, mesenchymal phenotype. Tumor epithelial cells may, upon detaching from the ECM, also transdifferentiate to NEPC as a cellular response to ADT. Another pathway to the neuroendocrine phenotype is differentiation of cell with stem cell-like properties. In addition to the separate lineages, a potential connection and spectrum of differentiation between the two phenotypes within the microenvironment may have significant functional consequences on prostate tumor progression. ADT, androgen deprivation therapy; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; NEPC, neuroendocrine-prostate cancer; PSA, prostate-specific antigen; AR, androgen receptor; MEK, mitogen-activated protein kinase; AURKA, aurora kinase A; CRPC, castration-resistant prostate cancer.
|
[1] |
Siegel RL, Miller KD, Jemal A . Cancer statistics. CA Cancer J Clin 2018; 66:7-30.
|
[2] |
Varenhorst E, Klaff R, Berglund A, Heldlund PO, Sandblom G . Predictors of early androgen deprivation treatment failure in prostate cancer with bone metastases. Cancer Med 2015: 409-14.
|
[3] |
Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jones JA, Taplin ME , et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 351:1513-20.
doi: 10.1056/NEJMoa041318
|
[4] |
Fizazi K, Scher HI, Molin A, Logothetis CJ, Chi K, Jones RJ , et al. Abiraterone acetate for treatment of metastatic castration resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomized, double-blind, placebo- controlled phase 3 study. Lancet Oncol 2012; 13:983-92.
doi: 10.1016/S1470-2045(12)70379-0
|
[5] |
Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS , et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014; 371:424-33.
doi: 10.1056/NEJMoa1405095
|
[6] |
Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R , et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10:33-9.
|
[7] |
Kahn B, Collazo J, Kyprianou N . Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014; 10:588-95.
doi: 10.7150/ijbs.8671
|
[8] |
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC , et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371:1028-38.
doi: 10.1056/NEJMoa1315815
|
[9] |
Kirby M, Hirst C, Crawford ED . Characterising the castrationresistant prostate cancer population: a systematic review. Int J Clin Pract 2011; 65:1180-92.
doi: 10.1111/ijcp.2011.65.issue-11
|
[10] |
Snoeks LL, Ogilvie AC, van Haarst EP, Siegert CE . New treatment options for patients with metastatic prostate cancer. Neth J Med 2013; 71:290-4.
|
[11] |
Zhu M, Horbinski CM, Garzotto M, Qian D, Beer T, Kyprianou N . Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 2010; 70:7992-8002.
doi: 10.1158/0008-5472.CAN-10-0585
|
[12] |
McKeithen C, Graham T, Chung L, Odero-Marah V . Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate 2010; 70:982-92.
|
[13] |
Wang Y, Zhou B . Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 2011; 30:603-11.
doi: 10.5732/cjc.011.10226
|
[14] |
Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK , et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res 2011; 71:6019-29.
doi: 10.1158/0008-5472.CAN-11-1417
|
[15] |
Nouri M, Ratther E, Stylianou N, Nelson C, Hollier B, Williams E . Androgen-targeted therapy-induced epithelial mesenchymal plasticity and neuroendocrine transdifferentiation in prostate cancer: an opportunity for intervention. Front Oncol 2014; 370:1-6.
|
[16] |
Parimi V, Goyal R, Poropatich K, Yang X . Neuroendocrine differentiation in prostate cancer: a review. Am J Clin Exp Urol 2014; 2:273-85.
|
[17] |
Beltran H, Jendrisak A, Landers M, Mosquera JM, Kossai M, Louw J , et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res 2016; 22:1510-9.
doi: 10.1158/1078-0432.CCR-15-0137
|
[18] |
Vlachostergios PJ, Papandreou CN . Targeting neuroendocrine prostate cancer: molecular and clinical perspectives. Front Oncol 2015; 5:6.
|
[19] |
Hauso O, Gustafsson BI, Kidd M, Waldum HL, Drozdov I, Chan AK , et al. Neuroendocrine tumor epidemiology. Cancer 2008; 113:2655-64.
doi: 10.1002/cncr.v113:10
|
[20] |
Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N . Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45:586-92.
doi: 10.1016/j.eururo.2003.11.032
|
[21] |
diSant’Agnese P . Neuroendocrine differentiation in prostatic carcinomas. Cancer 1995; 75:1850-9.
doi: 10.1002/(ISSN)1097-0142
|
[22] |
National Comprehensive Cancer Network. Prostate cancer. Version 1.2016. 2016. http://nccn.org.
|
[23] |
Humphrey PA . Histological variants of prostate carcinoma and their significance. Histopathology 2012; 60:59-74.
doi: 10.1111/j.1365-2559.2011.04039.x
|
[24] |
Pu H, Collazo J, Jones E, Gayheart D, Sakamoto S, Vogt A , et al. Dysfunctional TGF-b receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Cancer Res 2009; 69:7366-74.
doi: 10.1158/0008-5472.CAN-09-0758
|
[25] |
Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K , et al. EMT and tumor metastasis. Clin Transl Med 2015; 4:1.
doi: 10.1186/s40169-015-0046-5
|
[26] |
Zhu B, Kyprianou N. Transforming growth factor-b and cancer. In: Alison MR, editor. The cancer textbook; 2007. p. 257-71.
|
[27] |
Wendt MK, Allington TM, Schiemann WP . Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 2009; 5:1145-68.
doi: 10.2217/fon.09.90
|
[28] |
Collazo J, Zhu B, Larkin S, Pu H, Koochekpour S, Martin SK , et al. Cofilin regulates cellular invasion responses to TGF-b towards prostate cancer metastasis. Cancer Res 2014; 74:2362-73.
doi: 10.1158/0008-5472.CAN-13-3058
|
[29] |
Hensley P, Zetter D, Horbinski C, Strup S, Kyprianou N . Association of epithelial-mesenchymal transition and nuclear cofilin with advanced urothelial cancer. Hum Pathol 2016; 57:68-77.
doi: 10.1016/j.humpath.2016.06.020
|
[30] |
Wallerand H, Robert G, Pasticier G, Ravaud A, Ballanger P, Reiter RE , et al. The epithelial-mesenchymal transitioninducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urol Oncol 2010; 28:473-9.
doi: 10.1016/j.urolonc.2008.12.018
|
[31] |
Mohile SG, Petrylak DP . Taxane-based chemotherapy for prostate cancer. Prostate Cancer 2007: 445-62.
|
[32] |
Zhu ML, Kyprianou N . Role of androgens and the androgen receptor in epithelialemesenchymal transition and invasion of prostate cancer cells. FASEB J 2010; 24:769-77.
doi: 10.1096/fj.09-136994
|
[33] |
Kumar S, Park SH, Cieply B, Schupp J, Killiam E, Zhang F , et al. A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition. Mol Cell Biol 2011; 31:4036-51.
doi: 10.1128/MCB.01342-10
|
[34] |
Derycke LD, Bracke ME . N-cadherin in the spotlight of cellecell adhesion, differentiation, embryogenesis, invasion and signaling. Int J Dev Biol 2004; 48:463-76.
doi: 10.1387/ijdb.041793ld
|
[35] |
Niu G, Chen X . Vascular endothelial growth factor as an antiangiogenic target for cancer therapy. Curr Drug Targets 2010; 11:1000-17.
doi: 10.2174/138945010791591395
|
[36] |
Anose B, Sanders M . Androgen receptor regulates transcription of the ZEB1 transcription factor. Int J Endocrinol 2011; 2011:903918.
|
[37] |
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA . Epithelial mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Investig 2009; 119:1438-49.
doi: 10.1172/JCI38019
|
[38] |
Baritaki S, Chapman A, Yeung K, Spandidos DA, Palladino M, Bonavida B . Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene 2009; 28:3573-85.
|
[39] |
Wu K, Gore C, Yang L, Fazli L, Gleave M, Pong RC , et al. Slug, a unique androgen-regulated transcription factor, coordinates androgen receptor to facilitate castration resistance in prostate cancer. Mol Endocrinol 2012; 26:1496-507.
doi: 10.1210/me.2011-1360
|
[40] |
Liu J, Uygur B, Zhang Z, Shao L, Romero D, Vary C , et al. Slug inhibits proliferation of human prostate cancer cells via downregulation of cyclin D1 expression. Prostate 2010; 70:1768-77.
|
[41] |
Hong SK, Kim JH, Lin MF, Park JI . The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res 2011; 317:2671-82.
doi: 10.1016/j.yexcr.2011.08.008
|
[42] |
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW , et al. RB1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017; 355:78-83.
doi: 10.1126/science.aah4199
|
[43] |
Mu P, Zhang Z, Benelli M, Karthaus WR, Prandi D, Hoover E , et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017; 355:84-8.
doi: 10.1126/science.aah4307
|
[44] |
Beltran H, Yelensky R, Frampton GM, Park K, Downing SR , MacDonald TY, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 2013; 63:920-6.
doi: 10.1016/j.eururo.2012.08.053
|
[45] |
Matuszak EA, Kyprianou N . Androgen regulation of epithelialemesenchymal transition in prostate tumorigenesis. Expert Rev Endocrinol Metab 2011; 6:469-82.
doi: 10.1586/eem.11.32
|
[46] |
Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H , et al. The master neural transcription factor BRN2 is an androgen receptor suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov 2017; 7:54-71.
doi: 10.1158/2159-8290.CD-15-1263
|
[47] |
Corn PG . The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res 2012; 4:183-93.
|
[48] |
Bubendorf L, Schl?pfer A, Wagner U, Sauter G, Moch H, Willi N , et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 2000; 31:578-83.
doi: 10.1053/hp.2000.6698
|
[49] |
Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S , et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 2011; 208:2641-55.
doi: 10.1084/jem.20110840
|
[50] |
Yuan T, Veeramani S, Lin M . Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 2007; 14:531-47.
doi: 10.1677/ERC-07-0061
|
[51] |
Chen X, Rycaj K, Liu X, Tang DG . New insights into prostate cancer stem cells. Cell Cycle 2013; 12:579-86.
doi: 10.4161/cc.23721
|
[52] |
Wyatt AW, Mo F, Wang K, McConeghy B, Brahmbratt S, Jong L , et al. Heterogeneity in the inter-tumor transcriptome of high rick prostate cancer. Genome Biol 2014; 15:426.
doi: 10.1186/s13059-014-0426-y
|
[53] |
Terry S, Beltran H . The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol 2014; 4:60.
|
[54] |
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J , et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22:298-305.
|
[55] |
Sun Y, Niu J, Huang J . Neuroendocrine differentiation in prostate cancer. Am J Transl Res 2009; 1:148-62.
|
[56] |
Bluemn E, Coleman I, Lucas J, Vessella RL, Morrissey C, Nelson PS . Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 2017; 32:474-89.
doi: 10.1016/j.ccell.2017.09.003
|
[57] |
Grant CM, Kyprianou N . Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Transl Androl Urol 2013; 2:202-11.
|
[58] |
Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M , et al. Insulin-like growth factor-idependent up-regulation of ZEB1 drives epithelial-tomesenchymal transition in human prostate cancer cells. Cancer Res 2008; 68:2479-88.
doi: 10.1158/0008-5472.CAN-07-2559
|
[59] |
Sadot E, Geiger B, Oren M, Ben-Ze’ev A . Down-regulation of beta-catenin by activated p53. Mol Cell Biol 2001; 21:6768-81.
doi: 10.1128/MCB.21.20.6768-6781.2001
|
[60] |
Satelli A, Li S . Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68:3033-46.
doi: 10.1007/s00018-011-0735-1
|
[61] |
Sartor O, Gillessen S . Treatment sequencing in metastatic castrate-resistant prostate cancer. Asian J Androl 2014; 16:426-31.
doi: 10.4103/1008-682X.126378
|
[62] |
van Soest RJ, de Morrée ES, Kweldam CF, de Ridder CMA, Wiemer EAC, Mathijssen RHJ , et al. Targeting the androgen receptor confers in vivo cross-resistance between enzalutamide and docetaxel, but not cabazitaxel, in castrationresistant prostate cancer. Eur Urol 2015; 67:981-5.
doi: 10.1016/j.eururo.2014.11.033
|
[63] |
Martin SK, Pu H, Penticuff J, Cao Z, Horbinski C, Kyprianou N . Multinucleation and mesenchymal-to-epithelial transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res 2016; 76:912-26.
doi: 10.1158/0008-5472.CAN-15-2078
|
[64] |
Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K , et al. Bcl-2 expression as a predictive marker of hormonerefractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 2006; 12:6116-24.
doi: 10.1158/1078-0432.CCR-06-0147
|
[65] |
Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M , et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017; 71:618-29.
doi: 10.1016/j.eururo.2016.08.003
|
[66] |
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY , et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017; 377:352-60.
doi: 10.1056/NEJMoa1704174
|
[67] |
de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I , et al., TROPIC Investigators. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet Oncol 2010; 376:1147-54.
doi: 10.1016/S0140-6736(10)61389-X
|
[68] |
Martin SK, Banuelos CA, Sadar MD, Kyprianou N . N-terminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. Mol Oncol 2015; 9:628-39.
doi: 10.1016/j.molonc.2014.10.014
|
[69] |
Humeniuk S, Gupta RT, Healy P, McNamara M, Ramalingam S, Harrison M , et al. Platinum sensitivity in metastatic prostate cancer: does histology matter? Prostate Cancer Prostatic Dis 2018; 21:92-9.
doi: 10.1038/s41391-017-0017-6
|
[70] |
Vashchenko N, Abrahsmsson P . Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 2004; 47:147-55.
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[3] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[4] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[5] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[6] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[7] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[8] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[9] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[10] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[11] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[12] |
Hendrik van Poppel,Wouter Everaerts,Lorenzo Tosco,Steven Joniau. Open and robotic radical prostatectomy[J]. Asian Journal of Urology, 2019, 6(2): 125-128. |
[13] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
[14] |
Laurence Klotz. Contemporary approach to active surveillance for favorable risk prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 146-152. |
[15] |
Michel Bolla,Ann Henry,Malcom Mason,Thomas Wiegel. The role of radiotherapy in localised and locally advanced prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 153-161. |
|
|
|
|