|
|
Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics |
Gina Chia-Yi Chua,Leland W.K. Chunga,*(),Murali Gururajana,b,Chia-Ling Hsiehc,Sajni Jossona,d,Srinivas Nandanaa,e,Shian-Ying Sungc,Ruoxiang Wanga,Jason Boyang Wua,f,Haiyen E. Zhaua
|
a Uro-Oncology Research, Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA b Bristol-Myer Squibb Company, Princeton, NJ, USA c Department of Urology, Emory University School of Medicine, Atlanta, GA, USA d Oncoveda Cancer Research Center, Genesis Biotechnology Group, Hamilton, NJ, USA e Texas Tech University Health Sciences Center, Department of Cell Biology and Biochemistry, Lubbock, TX, USA f Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA |
|
|
Abstract This article describes cell signaling network of metastatic prostate cancer (PCa) to bone and visceral organs in the context of tumor microenvironment and for the development of novel therapeutics. The article focuses on our recent progress in the understanding of: 1) The plasticity and dynamics of tumor-stroma interaction; 2) The significance of epigenetic reprogramming in conferring cancer growth, invasion and metastasis; 3) New insights on altered junctional communication affecting PCa bone and brain metastases; 4) Novel strategies to overcome therapeutic resistance to hormonal antagonists and chemotherapy; 5) Genetic-based therapy to co-target tumor and bone stroma; 6) PCa-bone-immune cell interaction and TBX2-WNTprotein signaling in bone metastasis; 7) The roles of monoamine oxidase and reactive oxygen species in PCa growth and bone metastasis; and 8) Characterization of imprinting cluster of microRNA, in tumor-stroma interaction. This article provides new approaches and insights of PCa metastases with emphasis on basic science and potential for clinical translation. This article referenced the details of the various approaches and discoveries described herein in peer-reviewed publications. We dedicate this article in our fond memory of Dr. Donald S. Coffey who taught us the spirit of sharing and the importance of focusing basic science discoveries toward translational medicine.
|
Received: 01 September 2018
Available online: 28 November 2018
|
Corresponding Authors:
Leland W.K. Chung
E-mail: leland.chung@cshs.org
|
|
|
|
Schematic diagram illustrates the concept of tumor cell recruitment and reprogramming in the tumor microenvironment. Through cell-cell interaction, MIC in the tumor microenvironment has the potential of recruiting resident bystander cells or indolent or dormant PCa cells, resulting in reprogramming these cells to express increased EMT, stemness, and NE phenotypes through RANK and c-Met-mediated activation of FOXM1-c-Myc/Max-AP4 signaling to promote PCa progression and metastases. Results of these series of studies emphasize the importance of tumor microenvironment driving cancer progression and metastasis through epigenetic reprogramming. EMT, epithelial to mesenchymal transition; NE, neuroendocrine; PCa, prostate cancer; RANK, the receptor activator of NF-κB; MIC, metastasis-initiating cells; RANKL, receptor activator of NF-kB ligand; AR, androgen receptor..
|
|
Gene-based therapies for mCRPC demonstrated in our studies by dually targeting tumor-stromal interactions in multiple steps of the metastatic cascade. Therapeutic targets in primary and metastatic sites against both PCa and cancer-associated stromal cells are outlined. This figure summarizes our concept of therapeutic co-targeting of tumor and stroma using gene therapeutic approaches. This concept is based on our observation that PCa cells, upon progression to develop bone metastatic potential, expressed high levels of genes mimicking the bone, or exhibiting osteomimicry phenotype, such as expressing non-collagenous bone-like proteins, osteocalcin (OC), osteopontin (OPN), osteonectin (ON) and bone sialoprotein (BSP). We constructed both replication-deficient and -competent adenoviral vectors using the bone-like protein promoters driving either therapeutic gene, thymidine kinease (TK), or E1, that render the viruses to become replication competent, to co-target both tumor and bone compartments, and observed cytotoxic effects against tumor growth in mouse skeleton. We have also observed beneficial effects in PCa tumor regression in mice at various anatomical sites by targeting cell-matrice interactions. We observed ECM-integrin interaction via αvβ3 and αvβ5, or interaction of PCa-cell adhesion-intermediate filament complex, through L1 cell adhesion molecule (L1CAM), can be effectively targeted by target-specific siRNA constructs. EMT, epithelial to mesenchymal transition; MET, mesenchymal to epithelial transition; mCRPC, metastatic castration-resistant prostate cancer; PCa, prostate cancer; ECM, extracellular matrix.
|
|
Factors modulating co-evolution of PCa and cancer-associated stromal cells. Diagram depicting the interaction of factors in the prostate primary tumors (seed) and the bone metastatic site (soil) with components of the immune microenvironment during the progression of the metastatic PCa. We identified additional molecular targets that can be manipulated in PCa local tumor growth and PCa tumor growth in bone. This includes inhibition of CXCR4 receptor and Wnt 3a in the primary PCa, and CXCL12 and RANKL-RANK communication in bone metastatic PCa. RANKL, receptor activator of NF-κB ligand; RANK, receptor activator of NF-κB; PCa, prostate cancer; CXCR4, CXC chemokine receptor 4; MMP-9, metalloproteinases-9; MMP-2, metalloproteinases-2.
|
[1] |
Josson S, Matsuoka Y, Chung LW, Zhau HE, Wang R . Tumorstroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 2010; 21:26-32.
doi: 10.1016/j.semcdb.2009.11.016
|
[2] |
Wang R, Sun X, Wang CY, Hu P, Chu CY, Liu S , et al. Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression. PLoS One 2012; 7: e42653. https://doi.org/10.1371/journal.pone.0042653.
doi: 10.1371/journal.pone.0042653
|
[3] |
Wang R, Xu J, Juliette L, Castilleja A, Love J, Sung SY , et al. Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 2005; 15:353-64.
doi: 10.1016/j.semcancer.2005.05.005
|
[4] |
Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE , et al. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci U S A 1990; 87:75-9.
doi: 10.1073/pnas.87.1.75
|
[5] |
Chung LW, Gleave ME, Hsieh JT, Hong SJ, Zhau HE . Reciprocal mesenchymal-epithelial interaction affecting prostate tumour growth and hormonal responsiveness. Cancer Surv 1991; 11:91-121.
|
[6] |
Chung LWHS, Zhau HE, Camps JL, Chang SM, Freeman MR, Gao C. Fibroblast-mediated human epithelial tumor growth and hormonal responsiveness. In: Coffey DS, Karr JP, Smith RG, Tindall DJ, editors. Molecular and cellular biology of prostate cancer. Springer US; 1991. p. 91-102.
|
[7] |
Gleave M, Hsieh JT, Gao CA, von Eschenbach AC, Chung LW . Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 1991; 51:3753-61.
|
[8] |
Pathak S, Nemeth MA, Multani AS , Thalmann GN, von Eschenbach AC, Chung LW. Can cancer cells transform normal host cells into malignant cells? Br J Cancer 1997; 76:1134-8.
|
[9] |
Rhee HW, Zhau HE, Pathak S, Multani AS, Pennanen S, Visakorpi T , et al. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a threedimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim 2001; 37:127-40.
|
[10] |
Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS , et al. Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res 2008; 68:9996-10003.
doi: 10.1158/0008-5472.CAN-08-2492
|
[11] |
Hughes S, Yoshimoto M, Beheshti B, Houlston RS, Squire JA, Evans A . The use of whole genome amplification to study chromosomal changes in prostate cancer: insights into genome-wide signature of preneoplasia associated with cancer progression. BMC Genomics 2006; 7:65.
doi: 10.1186/1471-2164-7-65
|
[12] |
Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA . Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 2000; 60:2562-6.
|
[13] |
Carstens JL, Shahi P, Van Tsang S, Smith B, Creighton CJ, Zhang Y , et al. FGFR1-WNT-TGF-beta signaling in prostate cancer mouse models recapitulates human reactive stroma. Cancer Res 2014; 74:609-20.
doi: 10.1158/0008-5472.CAN-13-1093
|
[14] |
Kim W, Barron DA, San Martin R, Chan KS, Tran LL, Yang F , et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A 2014; 111:16389-94.
doi: 10.1073/pnas.1407097111
|
[15] |
San Martin R, Pathak R, Jain A, Jung SY, Hilsenbeck SG, Pina- Barba MC , et al. Tenascin-C and integrin alpha9 mediate interactions of prostate cancer with the bone microenvironment. Cancer Res 2017; 77:5977-88.
doi: 10.1158/0008-5472.CAN-17-0064
|
[16] |
Webber JP, Spary LK, Mason MD, Tabi Z, Brewis IA, Clayton A . Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes. Oncotarget 2016; 7:20124-39.
|
[17] |
Zhu YP, Wan FN, Shen YJ, Wang HK, Zhang GM, Ye DW . Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget 2015; 6:14488-96.
|
[18] |
Iacobuzio-Donahue CA, Argani P, Hempen PM, Jones J, Kern SE . The desmoplastic response to infiltrating breast carcinoma: Gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 2002; 62:5351-7.
|
[19] |
Pienta KJ, Murphy BC, Getzenberg RH, Coffey DS . The effect of extracellular matrix interactions on morphologic transformation in vitro. Biochem Biophys Res Commun 1991; 179:333-9.
doi: 10.1016/0006-291X(91)91374-L
|
[20] |
Hsieh CL, Liu CM, Chen HA, Yang ST, Shigemura K, Kitagawa K , et al. Reactive oxygen species-mediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression. Sci Rep 2017; 7:9065.
doi: 10.1038/s41598-017-08835-9
|
[21] |
Kessenbrock K, Dijkgraaf GJ, Lawson DA, Littlepage LE, Shahi P, Pieper U , et al. A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 2013; 13:300-13.
doi: 10.1016/j.stem.2013.06.005
|
[22] |
Mehner C, Miller E, Khauv D, Nassar A, Oberg AL, Bamlet WR , et al. Tumor cell-derived MMP3 orchestrates Rac1b and tissue alterations that promote pancreatic adenocarcinoma. Mol Cancer Res 2014; 12:1430-9.
doi: 10.1158/1541-7786.MCR-13-0557-T
|
[23] |
Tuxhorn JA, Ayala GE, Rowley DR . Reactive stroma in prostate cancer progression. J Urol 2001; 166:2472-83.
doi: 10.1016/S0022-5347(05)65620-0
|
[24] |
Sung SY, Kubo H, Shigemura K, Arnold RS, Logani S, Wang R , et al. Oxidative stress induces ADAM9 protein expression in human prostate cancer cells. Cancer Res 2006; 66:9519-26.
doi: 10.1158/0008-5472.CAN-05-4375
|
[25] |
Fritzsche FR, Jung M, Tolle A, Wild P, Hartmann A, Wassermann K , et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur Urol 2008; 54:1097-106.
doi: 10.1016/j.eururo.2007.11.034
|
[26] |
Shigemura K, Sung SY, Kubo H, Arnold RS, Fujisawa M, Gotoh A , et al. Reactive oxygen species mediate androgen receptor- and serum starvation-elicited downstream signaling of ADAM9 expression in human prostate cancer cells. Prostate 2007; 67:722-31.
doi: 10.1002/(ISSN)1097-0045
|
[27] |
Josson S, Anderson CS, Sung SY, Johnstone PA, Kubo H, Hsieh CL , et al. Inhibition of ADAM9 expression induces epithelial phenotypic alterations and sensitizes human prostate cancer cells to radiation and chemotherapy. Prostate 2011; 71:232-40.
doi: 10.1002/pros.v71.3
|
[28] |
Lin CY, Chen HJ, Huang CC, Lai LC, Lu TP, Tseng GC , et al. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway. Cancer Res 2014; 74:5229-43.
doi: 10.1158/0008-5472.CAN-13-2995
|
[29] |
Liu CM, Hsieh CL, He YC, Lo SJ, Liang JA, Hsieh TF , et al. In vivo targeting of ADAM9 gene expression using lentivirusdelivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PLoS One 2013; 8: e53795. https://doi.org/10.1371/journal.pone.0053795.
doi: 10.1371/journal.pone.0053795
|
[30] |
Chu GC, Chung LW . RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev 2014; 33:497-509.
doi: 10.1007/s10555-013-9488-7
|
[31] |
Cheung KJ, Ewald AJ . A collective route to metastasis: seeding by tumor cell clusters. Science 2016; 352:167-9.
doi: 10.1126/science.aaf6546
|
[32] |
Cheung KJ, Gabrielson E, Werb Z, Ewald AJ . Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155:1639-51.
doi: 10.1016/j.cell.2013.11.029
|
[33] |
Friedl P, Locker J, Sahai E, Segall JE . Classifying collective cancer cell invasion. Nat Cell Biol 2012; 14:777-83.
|
[34] |
Chu GC, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M , et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 2014; 21:311-26.
doi: 10.1530/ERC-13-0548
|
[35] |
Ziaee S, Chu GC, Huang JM, Sieh S, Chung LW . Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol 2015; 4:438-54.
|
[36] |
Hu P, Chung LW, Berel D, Frierson HF, Yang H, Liu C , et al. Convergent RANK- and c-Met-mediated signaling components predict survival of patients with prostate cancer: an interracial comparative study. PLoS One 2013; 8: e73081. https: //doi.org/10.1371/journal.pone.0073081.
doi: 10.1371/journal.pone.0073081
|
[37] |
Li Q, Li Q, Nuccio J, Liu C, Duan P, Wang R , et al. Metastasis initiating cells in primary prostate cancer tissues from transurethral resection of the prostate (TURP) predicts castration-resistant progression and survival of prostate cancer patients. Prostate 2015; 75:1312-21.
doi: 10.1002/pros.v75.12
|
[38] |
Chung LW, Zhau HE, Wu TT . Development of human prostate cancer models for chemoprevention and experimental therapeutics studies. J Cell Biochem Suppl 1997; 28e29:174-81.
|
[39] |
Zhau HE, Odero-Marah V, Lue HW, Nomura T, Wang R, Chu G , et al. Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 2008; 25:601-10.
doi: 10.1007/s10585-008-9183-1
|
[40] |
Zhau HY, Chang SM, Chen BQ, Wang Y, Zhang H, Kao C , et al. Androgen-repressed phenotype in human prostate cancer. Proc Natl Acad Sci U S A 1996; 93:15152-7.
doi: 10.1073/pnas.93.26.15152
|
[41] |
Myatt SS, Lam EW . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7:847-59.
doi: 10.1038/nrc2223
|
[42] |
Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R , et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014; 510:278-82.
doi: 10.1038/nature13229
|
[43] |
Henssen A, Thor T, Odersky A, Heukamp L, El-Hindy N, Beckers A , et al. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget 2013; 4:2080-95.
|
[44] |
Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH , et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 2013; 3:308-23.
doi: 10.1158/2159-8290.CD-12-0418
|
[45] |
Kwok JM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EW . Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther 2008; 7:2022-32.
doi: 10.1158/1535-7163.MCT-08-0188
|
[46] |
Gemenetzidis E, Elena-Costea D, Parkinson EK, Waseem A, Wan H, Teh MT . Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res 2010; 70:9515-26.
doi: 10.1158/0008-5472.CAN-10-2173
|
[47] |
Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo- Martin M, Zheng T , et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell 2014; 25:638-51.
doi: 10.1016/j.ccr.2014.03.017
|
[48] |
Cantone I, Fisher AG . Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013; 20:282-9.
doi: 10.1038/nsmb.2489
|
[49] |
Mostoslavsky R, Bardeesy N . Reprogramming enhancers to drive metastasis. Cell 2017; 170:823-5.
doi: 10.1016/j.cell.2017.08.010
|
[50] |
Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B , et al. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 2017; 170:875-88.
doi: 10.1016/j.cell.2017.07.007
|
[51] |
Christman JK . 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21:5483-95.
|
[52] |
Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE . Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1996; 15:507-25.
doi: 10.1007/BF00054016
|
[53] |
Malecha MJ, Miettinen M . Expression of keratin 13 in human epithelial neoplasms. Virchows Arch A Pathol Anat Histopathol 1991; 418:249-54.
doi: 10.1007/BF01606063
|
[54] |
van Muijen GN, Ruiter DJ, Franke WW, Achtstatter T, Haasnoot WH, Ponec M , et al. Cell type heterogeneity of cytokeratin expression in complex epithelia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins nos. 4 and 13. Exp Cell Res 1986; 162:97-113.
doi: 10.1016/0014-4827(86)90429-5
|
[55] |
Aktary Z, Alaee M, Pasdar M . Beyond cell-cell adhesion: plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2017; 8:32270-91.
|
[56] |
Saha SK, Choi HY, Kim BW, Dayem AA, Yang GM, Kim KS , et al. KRT19 directly interacts with beta-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties. Oncogene 2017; 36:332-49.
|
[57] |
Li Q, Yin L, Jones LW, Chu GC, Wu JB, Huang JM , et al. Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells. Oncotarget 2016; 7:84645-57.
|
[58] |
Liu S, Cadaneanu RM, Zhang B, Huo L, Lai K, Li X , et al. Keratin 13 is enriched in prostate tubule-initiating cells and may identify primary prostate tumors that metastasize to the bone. PLoS One 2016; 11:e0163232. https://doi.org/10. 1371/journal.pone.0163232.
|
[59] |
Yin L, Li QL, Huang JM, Lewis M, Garraway IP, Li QL , et al. Keratin 13 drives the dissemination of bone and brain metastases of human prostate and breast cancr cells. In: AACR 107th Annual Meeting; 2016. April 16 - 20, 2016, New Orleans, LA Abstract #4957. 2016.
|
[60] |
Chen Y, Tezcan O, Li D, Beztsinna N, Lou B, Etrych T , et al. Overcomingmultidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale 2017; 9:10404-19.
doi: 10.1039/C7NR03592F
|
[61] |
Pan R, Ruvolo V, Mu H, Leverson JD, Nichols G, Reed JC , et al. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell 2017; 32:748-60.
doi: 10.1016/j.ccell.2017.11.003
|
[62] |
Ohashi Y, Okamura M, Katayama R, Fang S, Tsutsui S, Akatsuka A , et al. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget 2018; 9:1641-55.
|
[63] |
Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A . Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer 2016; 15:69.
doi: 10.1186/s12943-016-0555-x
|
[64] |
Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J , et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 2013; 19:1114-23.
doi: 10.1038/nm.3291
|
[65] |
Park SA, Surh YJ . Modulation of tumor microenvironment by chemopreventive natural products. Ann N Y Acad Sci 2017; 1401:65-74.
doi: 10.1111/nyas.2017.1401.issue-1
|
[66] |
Martin SK, Kyprianou N . Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate cancer. Adv Cancer Res 2015; 127:123-58.
doi: 10.1016/bs.acr.2015.03.001
|
[67] |
Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R , et al. Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res 2010; 16:2833-44.
doi: 10.1158/1078-0432.CCR-10-0059
|
[68] |
Yang X, Shao C, Wang R, Chu CY, Hu P, Master V , et al. Optical imaging of kidney cancer with novel near infrared heptamethine carbocyanine fluorescent dyes. J Urol 2013; 189:702-10.
doi: 10.1016/j.juro.2012.09.056
|
[69] |
Shao C, Liao CP, Hu P, Chu CY, Zhang L, Bui MH , et al. Detection of live circulating tumor cells by a class of nearinfrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer. PLoS One 2014; 9: e88967. https://doi.org/10.1371/journal.pone.0088967.
doi: 10.1371/journal.pone.0088967
|
[70] |
Shi C, Wu JB, Chu GC, Li Q, Wang R, Zhang C , et al. Heptamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF-1alpha/OATPs signaling axis. Oncotarget 2014; 5:10114-26.
|
[71] |
Yuan J, Yi X, Yan F, Wang F, Qin W, Wu G , et al. Nearinfrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes. Mol Med Rep 2015; 11:821-8.
doi: 10.3892/mmr.2014.2815
|
[72] |
An J, Zhao N, Zhang C, Zhao Y, Tan D, Zhao Y , et al. Heptamethine carbocyanine DZ-1 dye for near-infrared fluorescence imaging of hepatocellular carcinoma. Oncotarget 2017; 8:56880-92.
|
[73] |
Wu JB, Shi C, Chu GC, Xu Q, Zhang Y, Li Q , et al. Nearinfrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor. Biomaterials 2015; 67:1-10.
doi: 10.1016/j.biomaterials.2015.07.028
|
[74] |
Wu J, Pan D, Chung LW . Near-infrared fluorescence and nuclear imaging and targeting of prostate cancer. Transl Androl Urol 2013; 2:254-64.
|
[75] |
Wu JB, Lin TP, Gallagher JD, Kushal S, Chung LW, Zhau HE , et al. Monoamine oxidase A inhibitor-near-infrared dye conjugate reduces prostate tumor growth. J Am Chem Soc 2015; 137:2366-74.
doi: 10.1021/ja512613j
|
[76] |
Quail DF, Joyce JA . Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19:1423-37.
|
[77] |
Josson S, Sharp S, Sung SY, Johnstone PA, Aneja R, Wang R , et al. Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. J Oncol 2010; 2010. pii: 232831. https://doi.org/10. 1155/2010/232831.
|
[78] |
Sung SY, Chang JL, Chen KC, Yeh SD, Liu YR, Su YH , et al. Cotargeting prostate cancer epithelium and bone stroma by human osteonectin-promoter-mediated suicide gene therapy effectively inhibits androgen-independent prostate cancer growth. PLoS One 2016; 11: e0153350. https: //doi.org/10.1371/journal.pone.0153350.
|
[79] |
Sung SY, Liao CH, Wu HP, Hsiao WC, Wu IH, Jinpu , et al. Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS One 2013; 8: e71637. https: //doi.org/10.1371/journal.pone.0071637.
doi: 10.1371/journal.pone.0071637
|
[80] |
Chung LW, Hsieh CL, Law A, Sung SY, Gardner TA, Egawa M , et al. New targets for therapy in prostate cancer: modulation of stromal-epithelial interactions. Urology 2003; 62:44-54.
doi: 10.1016/S0090-4295(03)00796-9
|
[81] |
Fizazi K, Yang J, Peleg S, Sikes CR, Kreimann EL, Daliani D , et al. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res 2003; 9:2587-97.
|
[82] |
Jacob K, Webber M, Benayahu D, Kleinman HK . Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 1999; 59:4453-7.
|
[83] |
Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I , et al. Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 1999; 5:2271-7.
|
[84] |
Waltregny D, Bellahcene A, Van Riet I, Fisher LW, Young M, Fernandez P , et al. Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst 1998; 90:1000-8.
doi: 10.1093/jnci/90.13.1000
|
[85] |
Koeneman KS, Yeung F, Chung LW . Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 1999; 39:246-61.
doi: 10.1002/(ISSN)1097-0045
|
[86] |
Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C , et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9:401-6.
doi: 10.1038/ng0495-401
|
[87] |
Matsubara S, Wada Y, Gardner TA, Egawa M, Park MS, Hsieh CL , et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgenindependent prostate cancer bone metastasis. Cancer Res 2001; 61:6012-9.
|
[88] |
Ko SC, Cheon J, Kao C, Gotoh A, Shirakawa T, Sikes RA , et al. Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res 1996; 56:4614-9.
|
[89] |
Hsieh CL, Gardner TA, Miao L, Balian G, Chung LW . Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther 2004; 11:148-55.
|
[90] |
Koeneman KS, Kao C, Ko SC, Yang L, Wada Y, Kallmes DF , et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol 2000; 18:102-10.
doi: 10.1007/s003450050181
|
[91] |
Hinata N, Shirakawa T, Terao S, Goda K, Tanaka K, Yamada Y , et al. Progress report on phase I/II clinical trial of Ad-OC-TK plus VAL therapy for metastatic or locally recurrent prostate cancer: initial experience at Kobe University. Int J Urol 2006; 13:834-7.
doi: 10.1111/iju.2006.13.issue-6
|
[92] |
Shirakawa T, Terao S, Hinata N, Tanaka K, Takenaka A, Hara I , et al. Long-term outcome of phase I/II clinical trial of Ad-OC-TK/VAL gene therapy for hormone-refractory metastatic prostate cancer. Hum Gene Ther 2007; 18:1225-32.
doi: 10.1089/hum.2007.074
|
[93] |
Hsieh CL, Yang L, Miao L, Yeung F, Kao C, Yang H , et al. A novel targeting modality to enhance adenoviral replication by vitamin D in androgen-independent human prostate cancer cells and tumors. Cancer Res 2002; 62:3084-92.
|
[94] |
Jin F, Xie Z, Kuo CJ, Chung LW, Hsieh CL . Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy. Cancer Gene Ther 2005; 12:257-67.
|
[95] |
Yu DC, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59:4200-3.
|
[96] |
Dilley J, Reddy S, Ko D, Nguyen N, Rojas G, Working P , et al. Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor effi- cacy without loss of specificity. Cancer Gene Ther 2005; 12:715-22.
|
[97] |
Huveneers S, Danen EH . Adhesion signaling e crosstalk between integrins, Src and Rho. J Cell Sci 2009; 122:1059-69.
doi: 10.1242/jcs.039446
|
[98] |
Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110:673-87.
doi: 10.1016/S0092-8674(02)00971-6
|
[99] |
Hess K, Boger C, Behrens HM, Rocken C . Correlation between the expression of integrins in prostate cancer and clinical outcome in 1284 patients. Ann Diagn Pathol 2014; 18:343-50.
doi: 10.1016/j.anndiagpath.2014.09.001
|
[100] |
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Pelger RC, van der Pluijm G . Integrin alphav expression is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Am J Pathol 2011; 179:2559-68.
doi: 10.1016/j.ajpath.2011.07.011
|
[101] |
Cooper CR, Chay CH, Pienta KJ . The role of alpha(v)beta(3) in prostate cancer progression. Neoplasia 2002; 4:191-4.
doi: 10.1038/sj.neo.7900224
|
[102] |
Bisanz K, Yu J, Edlund M, Spohn B, Hung MC, Chung LW , et al. Targeting ECM-integrin interaction with liposomeencapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther 2005; 12:634-43.
doi: 10.1016/j.ymthe.2005.05.012
|
[103] |
Doberstein K, Harter PN, Haberkorn U, Bretz NP, Arnold B, Carretero R , et al. Antibody therapy to human L1CAM in a transgenic mouse model blocks local tumor growth but induces EMT. Int J Cancer 2015; 136:E326-39.
doi: 10.1002/ijc.29222
|
[104] |
Hortsch M . Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 2000; 15:1-10.
|
[105] |
Angiolini F, Cavallaro U . The pleiotropic role of L1CAM in tumor vasculature. Int J Mol Sci 2017; 18(2). pii: E254. https://doi.org/10.3390/ijms18020254.
doi: 10.3390/ijms18020254
|
[106] |
Kiefel H, Bondong S, Pfeifer M, Schirmer U, Erbe-Hoffmann N, Schafer H , et al. EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NFkappaB activation. Carcinogenesis 2012; 33:1919-29.
doi: 10.1093/carcin/bgs220
|
[107] |
Sung SY, Wu IH, Chuang PH, Petros JA, Wu HC, Zeng HJ , et al. Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth. Oncotarget 2014; 5:9911-29.
|
[108] |
Gay LJ, Felding-Habermann B . Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11:123-34.
doi: 10.1038/nrc3004
|
[109] |
Lambert AW, Pattabiraman DR, Weinberg RA . Emerging biological principles of metastasis. Cell 2017; 168:670-91.
doi: 10.1016/j.cell.2016.11.037
|
[110] |
Boyle WJ, Simonet WS, Lacey DL . Osteoclast differentiation and activation. Nature 2003; 423:337-42.
doi: 10.1038/nature01658
|
[111] |
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T , et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93:165-76.
doi: 10.1016/S0092-8674(00)81569-X
|
[112] |
Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M , et al. Osteoprotegerin and rank ligand expression in prostate cancer. Urology 2001; 57:611-6.
doi: 10.1016/S0090-4295(00)01122-5
|
[113] |
Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N , et al. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 2003; 163:2021-31.
doi: 10.1016/S0002-9440(10)63560-2
|
[114] |
Chinni SR, Yamamoto H, Dong Z, Sabbota A, Bonfil RD, Cher ML . CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol Cancer Res 2008; 6:446-57.
doi: 10.1158/1541-7786.MCR-07-0117
|
[115] |
Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J , et al. Skeletal localization and neutralization of the SDF- 1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 2005; 20:318-29.
|
[116] |
Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA , et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003; 89:462-73.
doi: 10.1002/(ISSN)1097-4644
|
[117] |
Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman LK, McCauley NS . Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62:1832-7.
|
[118] |
Singh S, Singh UP, Grizzle WE, Lillard Jr JW . CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 2004; 84:1666-76.
|
[119] |
Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H . Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 2008; 99:539-42.
doi: 10.1111/cas.2008.99.issue-3
|
[120] |
Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J , et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 2011; 121:1298-312.
doi: 10.1172/JCI43414
|
[121] |
Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R , et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 2011; 71:5522-34.
doi: 10.1158/0008-5472.CAN-10-3143
|
[122] |
Moon JB, Kim JH, Kim K, Youn BU, Ko A, Lee SY , et al. Akt induces osteoclast differentiation through regulating the GSK3beta/NFATc1 signaling cascade. J Immunol 2012; 188:163-9.
doi: 10.4049/jimmunol.1101254
|
[123] |
Penzo M, Habiel DM, Ramadass M, Kew RR, Marcu KB . Cell migration to CXCL12 requires simultaneous IKKalpha and IKKbeta-dependent NF-kappaB signaling. Biochim Biophys Acta 2014; 1843:1796-804.
doi: 10.1016/j.bbamcr.2014.04.011
|
[124] |
Rehman AO, Wang CY . CXCL12/SDF-1 alpha activates NFkappaB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int J Oral Sci 2009; 1:105-18.
doi: 10.4248/IJOS.09059
|
[125] |
Saitoh Y, Koizumi K, Sakurai H, Minami T, Saiki I . RANKLinduced down-regulation of CX3CR1 via PI3K/Akt signaling pathway suppresses Fractalkine/CX3CL1-induced cellular responses in RAW264.7 cells. Biochem Biophys Res Commun 2007; 364:417-22.
doi: 10.1016/j.bbrc.2007.09.137
|
[126] |
Singh AP, Arora S, Bhardwaj A, Srivastava SK, Kadakia MP, Wang B , et al. CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression in pancreatic cancer cells via extracellular regulated kinase- and Akt kinase-mediated activation of nuclear factor kappaB: implications for bidirectional tumor-stromal interactions. J Biol Chem 2012; 287:39115-24.
doi: 10.1074/jbc.M112.409581
|
[127] |
McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH , et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006; 354:821-31.
doi: 10.1056/NEJMoa044459
|
[128] |
Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B , et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 2012; 379:39-46.
doi: 10.1016/S0140-6736(11)61226-9
|
[129] |
Smith MR, Saad F, Egerdie B, Sieber PR, Tammela TL, Ke C , et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol 2012; 30:3271-6.
doi: 10.1200/JCO.2011.38.8850
|
[130] |
Saylor PJ, Armstrong AJ, Fizazi K, Freedland S, Saad F, Smith MR , et al. New and emerging therapies for bone metastases in genitourinary cancers. Eur Urol 2013; 63:309-20.
doi: 10.1016/j.eururo.2012.10.007
|
[131] |
Ramsey DM , McAlpine SR. Halting metastasis through CXCR4 inhibition. Bioorg Med Chem Lett 2013; 23:20-5.
doi: 10.1016/j.bmcl.2012.10.138
|
[132] |
Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK . CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 2011; 17:2074-80.
doi: 10.1158/1078-0432.CCR-10-2636
|
[133] |
Cho GS, Choi SC, Park EC, Han JK . Role of Tbx2 in defining the territory of the pronephric nephron. Development 2011; 138:465-74.
doi: 10.1242/dev.061234
|
[134] |
Douglas NC, Heng K, Sauer MV, Papaioannou VE . Dynamic expression of Tbx2 subfamily genes in development of the mouse reproductive system. Dev Dynam 2012; 241:365-75.
doi: 10.1002/dvdy.23710
|
[135] |
Greulich F, Rudat C, Kispert A . Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 2011; 91:212-22.
doi: 10.1093/cvr/cvr112
|
[136] |
Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM , et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 2000; 26:291-9.
|
[137] |
Lingbeek ME, Jacobs JJ, van Lohuizen M . The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 2002; 277:26120-7.
doi: 10.1074/jbc.M200403200
|
[138] |
Vance KW, Carreira S, Brosch G, Goding CR . Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res 2005; 65:2260-8.
doi: 10.1158/0008-5472.CAN-04-3045
|
[139] |
Andersen CL, Monni O, Wagner U, Kononen J, Barlund M, Bucher C , et al. High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays. Am J Pathol 2002; 161:73-9.
doi: 10.1016/S0002-9440(10)64158-2
|
[140] |
Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C , et al. Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res 2017; 77:1331-44.
doi: 10.1158/0008-5472.CAN-16-0497
|
[141] |
Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK . Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 2008; 68:1777-85.
doi: 10.1158/0008-5472.CAN-07-5259
|
[142] |
Oh B, Figtree G, Costa D, Eade T, Hruby G, Lim S , et al. Oxidative stress in prostate cancer patients: a systematic review of case control studies. Prostate Int 2016; 4:71-87.
doi: 10.1016/j.prnil.2016.05.002
|
[143] |
Kumari S, Badana AK, G MM, G S, Malla R . Reactive oxygen species: a key constituent in cancer survival. Biomark Insights 2018; 13:1177271918755391. https://doi.org/10.1177/1177271918755391.
|
[144] |
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H . A mini-review of reactive oxygen species in urological cancer: correlation with NADPH oxidases, angiogenesis, apoptosis. Int J Mol Sci 2017; 18(10). pii: E2214. https://doi. org/10.3390/ijms18102214.
doi: 10.3390/ijms18102214
|
[145] |
Savore C, Zhang C, Muir C, Liu R, Wyrwa J, Shu J , et al. Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin Exp Metastasis 2005; 22:377-90.
doi: 10.1007/s10585-005-2339-3
|
[146] |
Flamand V, Zhao H, Peehl DM . Targeting monoamine oxidase A in advanced prostate cancer. J Cancer Res Clin Oncol 2010; 136:1761-71.
doi: 10.1007/s00432-010-0835-6
|
[147] |
True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R , et al. A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci U S A 2006; 103:10991-6.
doi: 10.1073/pnas.0603678103
|
[148] |
Bortolato M, Chen K, Shih JC . Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60:1527-33.
doi: 10.1016/j.addr.2008.06.002
|
[149] |
Wu JB, Shao C, Li X, Li Q, Hu P, Shi C , et al. Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest 2014; 124:2891-908.
doi: 10.1172/JCI70982
|
[150] |
Berruti A, Piovesan A, Torta M, Raucci CA, Gorzegno G, Paccotti P , et al. Biochemical evaluation of bone turnover in cancer patients with bone metastases: relationship with radiograph appearances and disease extension. Br J Cancer 1996; 73:1581-7.
|
[151] |
Percival RC, Urwin GH, Harris S, Yates AJ, Williams JL, Beneton M , et al. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol 1987; 13:41-9.
|
[152] |
Odero-Marah VA, Wang R, Chu G, Zayzafoon M, Xu J, Shi C , et al. Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res 2008; 18:858-70.
doi: 10.1038/cr.2008.84
|
[153] |
Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy CF , et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 1998; 77:887-94.
doi: 10.1002/(ISSN)1097-0215
|
[154] |
Wu JB, Yin L, Shi C, Li Q, Duan P, Huang JM , et al. MAOAdependent activation of Shh-IL6-RANKL signaling network promotes prostate cancer metastasis by engaging tumorstromal cell interactions. Cancer Cell 2017; 31:368-82.
doi: 10.1016/j.ccell.2017.02.003
|
[155] |
Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL , et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54:2577-81.
|
[156] |
Gururajan M, Josson S, Chu GC, Lu CL, Lu YT, Haga CL , et al. miR-154* and miR-379 in the DLK1-DIO3 microRNA megacluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res 2014; 20:6559-69.
doi: 10.1158/1078-0432.CCR-14-1784
|
[157] |
Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE , et al. miR-409-3p/-5p promotes tumorigenesis, epithelial-tomesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res 2014; 20:4636-46.
doi: 10.1158/1078-0432.CCR-14-0305
|
[158] |
Josson S, Gururajan M, Sung SY, Hu P, Shao C, Zhau HE , et al. Stromal fibroblast-derived miR-409 promotes epithelial-tomesenchymal transition and prostate tumorigenesis. Oncogene 2015; 34:2690-9.
|
[159] |
Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z , et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem 2010; 285:19483-90.
doi: 10.1074/jbc.M110.131995
|
[160] |
Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S , et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465:175-81.
doi: 10.1038/nature09017
|
[161] |
Kim MS, Kim SS, Je EM, Yoo NJ, Lee SH . Mutational and expressional analyses of STAG2 gene in solid cancers. Neoplasma 2012; 59:524-9.
doi: 10.4149/neo_2012_067
|
[162] |
Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT , et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011; 333:1039-43.
doi: 10.1126/science.1203619
|
[163] |
Josson S, Sung SY, Lao K, Chung LW, Johnstone PA . Radiation modulation of microRNA in prostate cancer cell lines. Prostate 2008; 68:1599-606.
doi: 10.1002/pros.v68:15
|
[164] |
Nguyen HC, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS , et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 2013; 73:346-54.
doi: 10.1002/pros.v73.4
|
[165] |
Li S, Meng H, Zhou F, Zhai L, Zhang L, Gu F , et al. MicroRNA- 132 is frequently down-regulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation. Pathol Res Pract 2013; 209:179-83.
doi: 10.1016/j.prp.2012.12.002
|
[166] |
Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN , et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol 2013; 8:1156-62.
doi: 10.1097/JTO.0b013e318299ac32
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[3] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[4] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[5] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[6] |
Abhishek Tripathi,Shilpa Gupta. Androgen receptor in bladder cancer: A promising therapeutic target[J]. Asian Journal of Urology, 2020, 7(3): 284-290. |
[7] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[8] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[9] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[10] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[11] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[12] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[13] |
Gwenaelle Gravis. Systemic treatment for metastatic prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 162-168. |
[14] |
Hendrik van Poppel,Wouter Everaerts,Lorenzo Tosco,Steven Joniau. Open and robotic radical prostatectomy[J]. Asian Journal of Urology, 2019, 6(2): 125-128. |
[15] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
|
|
|
|