|
|
Combination therapy with androgen deprivation for hormone sensitive prostate cancer: A new frontier |
Tyler Etheridgea,Shivashankar Damodarana,Adam Schultza,Kyle A. Richardsa,Joseph Gawdzika,Bing Yanga,Vincent Crynsb,c,David F. Jarrarda,c,*()
|
a Department of Urology, University of Wisconsin-Madison, Madison, WI, USA b Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA c University of Wisconsin-Madison, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA |
|
|
Abstract Androgen deprivation therapy (ADT) has been the standard of care for the last 75 years in metastatic hormone sensitive prostate cancer (PCa). However, this approach is rarely curative. Recent clinical trials have demonstrated that ADT combined with other agents, notably docetaxel and abiraterone, lead to improved survival. The mechanisms surrounding this improved cancer outcomes are incompletely defined. The response of cancer cells to ADT includes apoptosis and cell death, but a significant fraction remains viable. Our laboratory has demonstrated both in vitro and in vivo that cellular senescence occurs in a subset of these cells. Cellular senescence is a phenotype characterized by cell cycle arrest, senescence-associated β-galactosidase (SA-β-gal), and a hypermetabolic state. Positive features of cellular senescence include growth arrest and immune stimulation, although persistence may release cytokines and growth factors that are detrimental. Senescent tumor cells generate a catabolic state with increased glycolysis, protein turnover and other metabolic changes that represent targets for drugs, like metformin, to be applied in a synthetic lethal approach. This review examines the response to ADT and the putative role of cellular senescence as a biomarker and therapeutic target in this context.
|
Received: 24 April 2018
Available online: 15 September 2018
|
Corresponding Authors:
David F. Jarrard
E-mail: jarrard@urology.wisc.edu
|
|
|
Clinical trial | ADT+ | Number of patients | Follow-up (month) | HR 95% CI | Reference | GETUG-AFU 15a | Docetaxel | 385 | 50 | 1.01 (0.75-1.36) | Gravis et al., 2013 [40] | CHAARTEDb | Docetaxel | 790 | 28.9 | 0.61 (0.47-0.80) | Sweeney et al., 2015 [3] | LATITUDEc | Abiraterone | 1199 | 30.4 | 0.62 (0.51-0.76) | Fizazi et al., 2017 [4] | STAMPEDE-Docd | Docetaxel | 2962 | 43 | 0.78 (0.66-0.93) | James et al., 2016 [5] | STAMPEDE-Abie | Abiraterone | 1917 | 40 | 0.63 (0.52-0.76) | James et al., 2017 [6] |
|
Summary of clinical trial results using ADT in combination with other therapies for the treatment of metastatic hormone sensitive PCa.
|
|
Synthetic lethal targeting of ADT induced cellular senescence for improved prostate cancer cell killing. ADT, androgen deprivation therapy.
|
Characteristic | Synthetic lethal targeting of senescent cells | Cell morphology | | SA-β-gal positive | Enlarged cell with prominent nuclei and cytoplasmic granularity | Metabolic alterations | Hypermetabolic | Glucose transport inhibitors phloretin, cytochalasin B, 2-deoxy-d-glucose [36] | Glycolysis | AMPK inhibitor compound C [36]/AMPK activator and mTOR inhibitor metformin [50], [51] | High protein turnover | Lysosomal V-ATPase inhibitors bafilomycin A1 and concanamycin A [36] | Secretory phenotype | Pro-inflammatory cytokines | Tumor microenvironment cancer-based immunotherapy [52] | Growth factors | Growth factor and growth factor receptor inhibitors (e.g. VEGF, IGF-1 inhibitors) [53] |
|
Presence of the cellular senescence phenotype offers therapeutic opportunities.
|
[1] |
Siegel RL, Miller KD, Jemal A . Cancer statistics, 2017. CA Cancer J Clin 2017; 67:7-30.
doi: 10.3322/caac.21387
|
[2] |
Moul JW . Hormone naïve prostate cancer: predicting and maximizing response intervals. Asian J Androl 2015; 17:929-35.
doi: 10.4103/1008-682X.152821
|
[3] |
Sweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M , et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 2015; 373:737-46.
doi: 10.1056/NEJMoa1503747
|
[4] |
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY , et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017; 377:352-60.
doi: 10.1056/NEJMoa1704174
|
[5] |
James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR , et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016; 387:1163-77.
doi: 10.1016/S0140-6736(15)01037-5
|
[6] |
James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP , et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017; 377:338-51.
doi: 10.1056/NEJMoa1702900
|
[7] |
Ewald JA, Desotelle JA, Wilding G, Jarrard DF . Therapyinduced senescence in cancer. J Natl Cancer Inst 2010; 102:1536-46.
doi: 10.1093/jnci/djq364
|
[8] |
Ewald JA, Desotelle JA, Church DR, Yang B, Huang W, Laurila TA , et al. Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate 2013; 73:337-45.
doi: 10.1002/pros.v73.4
|
[9] |
Tuttle R, Miller KR, Maiorano JN, Termuhlen PM, Gao Y, Berberich SJ . Novel senescence associated gene, YPEL3, is repressed by estrogen in ERt mammary tumor cells and required for tamoxifen-induced cellular senescence. Int J Cancer 2012; 130:2291-9.
doi: 10.1002/ijc.v130.10
|
[10] |
Kyprianou N, Isaacs JT . Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 1988; 122:552-62.
doi: 10.1210/endo-122-2-552
|
[11] |
Kyprianou N, English HF, Isaacs JT . Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 1990; 50:3748-53.
|
[12] |
Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW , et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 1999; 91:1869-76.
doi: 10.1093/jnci/91.21.1869
|
[13] |
Ohlson N, Wikstr?m P, Stattin P, Bergh A . Cell proliferation and apoptosis in prostate tumors and adjacent non-malignant prostate tissue in patients at different time-points after castration treatment. Prostate 2005; 62:307-15.
doi: 10.1002/pros.v62:4
|
[14] |
Westin P, Stattin P, Damber JE, Bergh A . Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostatic tumors. Am J Pathol 1995; 146:1368-75.
|
[15] |
Smitherman AB, Gregory CW, Mohler JL . Apoptosis levels increase after castration in the CWR22 human prostate cancer xenograft. Prostate 2003; 57:24-31.
doi: 10.1002/(ISSN)1097-0045
|
[16] |
Zhang KX, Firus J, Prieur B, Jia W, Rennie PS . To die or to survive, a fatal question for the destiny of prostate cancer cells after androgen deprivation therapy. Cancers (Basel) 2011; 3:1498-512.
doi: 10.3390/cancers3021498
|
[17] |
Mathew R, Karantza-Wadsworth V, White E . Role of autophagy in cancer. Nat Rev Cancer 2007; 7:961-7.
doi: 10.1038/nrc2254
|
[18] |
Gerland LM, Peyrol S, Lallemand C, Branche R, Magaud JP, Ffrench M . Association of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. Exp Gerontol 2003; 38:887-95.
doi: 10.1016/S0531-5565(03)00132-3
|
[19] |
Chhipa RR, Wu Y, Ip C . AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal 2011; 23:1466-72.
doi: 10.1016/j.cellsig.2011.04.008
|
[20] |
Boutin B, Tajeddine N, Vandersmissen P, Zanou N, Van Schoor M, Mondin L , et al. Androgen deprivation and androgen receptor competition by bicalutamide induce autophagy of hormone-resistant prostate cancer cells and confer resistance to apoptosis. Prostate 2013; 73:1090-102.
doi: 10.1002/pros.v73.10
|
[21] |
Ojo D, Lin X, Wong N, Gu Y, Tang D . Prostate cancer stem-like cells contribute to the development of castration-resistant prostate cancer. Cancers (Basel) 2015; 7:2290-308.
doi: 10.3390/cancers7040890
|
[22] |
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65:10946-51.
doi: 10.1158/0008-5472.CAN-05-2018
|
[23] |
Hayflick L . The limited in vitro lifespan of human diploid cell strains. Exp Cell Res 1965; 25:585-621.
|
[24] |
Campisi J . Cancer, aging and cellular senescence. In Vivo 2000; 14:183-8.
|
[25] |
Gewirtz DA, Holt SE, Elmore LW . Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 2008; 76:947-57.
doi: 10.1016/j.bcp.2008.06.024
|
[26] |
Ghashghaei M, Paliouras M, Heravi M, Bekerat H, Trifiro M, Niazi TM , et al. Enhanced radiosensitization of enzalutamide via schedule dependent administration to androgen-sensitive prostate cancer cells. Prostate 2018; 78:64-75.
doi: 10.1002/pros.v78.1
|
[27] |
Bringold F, Serrano M . Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 2000; 35:317-29.
doi: 10.1016/S0531-5565(00)00083-8
|
[28] |
Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y , et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 1999; 59:3761-7.
|
[29] |
Schwarze SR, Fu VX, Desotelle JA, Kenowski ML, Jarrard DF . The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 2005; 7:816-23.
doi: 10.1593/neo.05250
|
[30] |
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C , et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995; 92:9363-7.
doi: 10.1073/pnas.92.20.9363
|
[31] |
Wagner J, Damaschke N, Yang B, Truong M, Guenther C, McCormick J , et al. Overexpression of the novel senescence marker b-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLoS One 2015; 10:e0124366.
doi: 10.1371/journal.pone.0124366
|
[32] |
Burton DG, Giribaldi MG, Munoz A, Halvorsen K, Patel A, Jorda M , et al. Androgen deprivation-induced senescence promotes outgrowth of androgen-refractory prostate cancer cells. PLoS One 2013; 8:e68003.
doi: 10.1371/journal.pone.0068003
|
[33] |
Pernicová Z, Slabáková E, Kharaishvili G, Bouchal J, Král M, Kunická Z , et al. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia 2011; 13:526-36.
doi: 10.1593/neo.11182
|
[34] |
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N , et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444:633-7.
|
[35] |
Blute ML, Damaschke N, Wagner J, Yang B, Gleave M, Fazli L , et al. Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS One 2017; 12:e0172048.
doi: 10.1371/journal.pone.0172048
|
[36] |
D?rr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Däbritz JH , et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 2013; 501:421-5.
doi: 10.1038/nature12437
|
[37] |
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y , et al. AMPactivated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18:283-93.
doi: 10.1016/j.molcel.2005.03.027
|
[38] |
Roediger J, Hessenkemper W, Bartsch S, Manvelyan M, Huettner SS, Liehr T , et al. Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Mol Cancer 2014; 13:214.
|
[39] |
Hessenkemper W, Roediger J, Bartsch S, Houtsmuller AB, van Royen ME, Petersen I , et al. A natural androgen receptor antagonist induces cellular senescence in prostate cancer cells. Mol Endocrinol 2014; 28:1831-40.
doi: 10.1210/me.2014-1170
|
[40] |
Gravis G, Fizazi K, Joly F, Oudard S, Priou F, Esterni B , et al. Androgen-deprivation therapy alone or with docetaxel in noncastrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14:149-58.
doi: 10.1016/S1470-2045(12)70560-0
|
[41] |
Zhu ML, Horbinski CM, Garzotto M, Qian DZ, Beer TM, Kyprianou N . Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Res 2010; 70:7992-8002.
doi: 10.1158/0008-5472.CAN-10-0585
|
[42] |
Thakur A, Roy A, Ghosh A, Chhabra M, Banerjee S . Abiraterone acetate in the treatment of prostate cancer. Biomed Pharmacother 2018; 101:211-8.
doi: 10.1016/j.biopha.2018.02.067
|
[43] |
Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S , et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008; 26:4563-71.
doi: 10.1200/JCO.2007.15.9749
|
[44] |
Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM , et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011; 17:5913-25.
doi: 10.1158/1078-0432.CCR-11-0728
|
[45] |
Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA , et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71:6503-13.
doi: 10.1158/0008-5472.CAN-11-0532
|
[46] |
Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J , et al. A gain-of-function mutation in DHT synthesis in castrationresistant prostate cancer. Cell 2013; 154:1074-84.
doi: 10.1016/j.cell.2013.07.029
|
[47] |
Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319:1352-5.
doi: 10.1126/science.1140735
|
[48] |
Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y , et al. Senescence-associated reprogramming promotes cancer stemness. Nature 2018; 553:96-100.
|
[49] |
Cairney CJ, Bilsland AE, Evans TR, Roffey J, Bennett DC, Narita M , et al. Cancer cell senescence: a new frontier in drug development. Drug Discov Today 2012; 17:269-76.
doi: 10.1016/j.drudis.2012.01.019
|
[50] |
Rocha GZ, Dias MM, Ropelle ER, Osório-Costa F, Rossato FA, Vercesi AE , et al. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 2011; 17:3993-4005.
doi: 10.1158/1078-0432.CCR-10-2243
|
[51] |
Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N . Metformin inhibits mammalian target of rapamycindependent translation initiation in breast cancer cells. Cancer Res 2007; 67:10804-12.
doi: 10.1158/0008-5472.CAN-07-2310
|
[52] |
Nakamura K, Smyth MJ . Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol 2017; 95:325-32.
doi: 10.1038/icb.2016.126
|
[53] |
Macfarlane RJ, Chi KN . Novel targeted therapies for prostate cancer. Urol Clin North Am 2010; 37:105-19, Table of Contents.
doi: 10.1016/j.ucl.2009.11.011
|
[54] |
Westerheide SD, Morimoto RI . Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 2005; 280:33097-100.
doi: 10.1074/jbc.R500010200
|
[55] |
Dai C, Whitesell L, Rogers AB, Lindquist S . Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007; 130:1005-18.
doi: 10.1016/j.cell.2007.07.020
|
[56] |
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B . Metformin: from mechanisms of action to therapies. Cell Metab 2014; 20:953-66.
doi: 10.1016/j.cmet.2014.09.018
|
[57] |
Dai S, Tang Z, Cao J, Zhou W, Li H, Sampson S , et al. Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J 2015; 34:275-93.
doi: 10.15252/embj.201489062
|
[58] |
Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM , et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009; 27:3297-302.
doi: 10.1200/JCO.2009.19.6410
|
[59] |
Colquhoun AJ, Venier NA, Vandersluis AD, Besla R, Sugar LM, Kiss A , et al. Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis 2012; 15:346-52.
doi: 10.1038/pcan.2012.16
|
[60] |
McCormick JR, Blute ML, Yang B, Damaschke N, Jarrard DF . Synthetic lethal metabolic targeting of cellular senescence in prostate cancer with the repurposed drug metformin. J Urol 2016; 195:e673-4.
|
[61] |
Richards KA, Liou JI, Cryns VL, Downs TM, Abel EJ, Jarrard DF . Metformin use is associated with improved survival in patients with advanced prostate cancer on androgen deprivation therapy. J Urol 2018; 200:1256-63.
doi: 10.1016/j.juro.2018.06.031
|
[62] |
Armitage J . The safety of statins in clinical practice. Lancet 2007; 370:1781-90.
doi: 10.1016/S0140-6736(07)60716-8
|
[63] |
Hamilton RJ, Goldberg KC, Platz EA, Freedland SJ . The influence of statin medications on prostate-specific antigen levels. J Natl Cancer Inst 2008; 100:1511-8.
doi: 10.1093/jnci/djn362
|
[64] |
Yang L, Egger M, Plattner R, Klocker H, Eder IE . Lovastatin causes diminished PSA secretion by inhibiting AR expression and function in LNCaP prostate cancer cells. Urology 2011; 77: 1508. e1501e7.
|
[65] |
Syvälä H, Pennanen P, Bläuer M, Tammela TL, Murtola TJ . Additive inhibitory effects of simvastatin and enzalutamide on androgen-sensitive LNCaP and VCaP prostate cancer cells. Biochem Biophys Res Commun 2016; 481:46-50.
doi: 10.1016/j.bbrc.2016.11.021
|
[66] |
Harshman LC, Wang X, Nakabayashi M, Xie W, Valenca L, Werner L , et al. Statin use at the time of initiation of androgen deprivation therapy and time to progression in patients with hormone-sensitive prostate cancer. JAMA Oncol 2015; 1:495-504.
doi: 10.1001/jamaoncol.2015.0829
|
[67] |
Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P . Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 2015; 5:17895.
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[3] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[4] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[5] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[6] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[7] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[8] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[9] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[10] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[11] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[12] |
Jean-Luc Descotes. Diagnosis of prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 129-136. |
[13] |
Gwenaelle Gravis. Systemic treatment for metastatic prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 162-168. |
[14] |
Hendrik van Poppel,Wouter Everaerts,Lorenzo Tosco,Steven Joniau. Open and robotic radical prostatectomy[J]. Asian Journal of Urology, 2019, 6(2): 125-128. |
[15] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
|
|
|
|