|
|
Potential impact of combined inhibition of 3α-oxidoreductases and 5α-reductases on prostate cancer |
Michael V. Fiandaloa,Daniel T. Gewirthb,James L. Mohlera,*()
|
a Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA b Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA |
|
|
Abstract Prostate cancer (PCa) growth and progression rely on the interaction between the androgen receptor (AR) and the testicular ligands, testosterone and dihydrotestosterone (DHT). Almost all men with advanced PCa receive androgen deprivation therapy (ADT). ADT lowers circulating testosterone levels, which impairs AR activation and leads to PCa regression. However, ADT is palliative and PCa recurs as castration-recurrent/resistant PCa (CRPC). One mechanism for PCa recurrence relies on intratumoral synthesis of DHT, which can be synthesized using the frontdoor or primary or secondary backdoor pathway. Androgen metabolism inhibitors, such as those targeting 5α-reductase, aldo-keto-reductase family member 3 (AKR1C3), or cytochrome P450 17A1 (CYP17A1) have either failed or produced only modest clinical outcomes. The goal of this review is to describe the therapeutic potential of combined inhibition of 5α-reductase and 3α-oxidoreductase enzymes that facilitate the terminal steps of the frontdoor and primary and secondary backdoor pathways for DHT synthesis. Inhibition of the terminal steps of the androgen metabolism pathways may be a way to overcome the shortcomings of existing androgen metabolism inhibitors and thereby delay PCa recurrence during ADT or enhance the response of CRPC to androgen axis manipulation.
|
Received: 02 June 2018
Available online: 26 September 2018
|
Corresponding Authors:
James L. Mohler
E-mail: James.mohler@roswellpark.org
|
|
|
|
Pathways to DHT synthesis (modified from Ref. [62]). 5α-reductase (SRD5A) 1, 2 or 3 (frontdoor pathway; pink) metabolize testosterone to dihydrotestosterone (DHT). 3α-oxidoreductase (primary backdoor pathway; purple) or aldo-keto reductase (secondary backdoor pathway; green) enzymes convert androstanediol or androstanedione, respectively to DHT.
|
|
5α-reductase (SRD5A) (blue) and 3α-oxidoreductase (oxidation [purple]; reduction [red]) target sites on steroid rings. SRD5A activity (blue) occurs at the 5α position of Ring A, 3α-oxidoreductase oxidation sites (purple) occur at the 3α position of Ring A and aldo-keto reduction (red) occurs at the 17β position of Ring D.
|
|
Sequence alignment of the four 3α-oxidoreductases showed that their catalytic amino acid residues are conserved (green box). COBALT protein sequence alignment shows the conserved catalytic amino acid residues among the four 3α-oxidoreductases.
|
|
Model of a coordinated attack on enzymes that drive dihydrotestosterone (DHT) production that should lower DHT levels better than an upstream attack of any specific enzyme. Androgen metabolism inhibitors against CYP17A1, 3α-oxidoreductase, aldo-keto reductase and SRD5A used simultaneously should lower DHT levels better than individual enzyme inhibition alone. CYP17A1, cytochrome P450 17A; SRD5A, 5-reductases; 3α-OR, 3α-oxidoreductase.
|
[1] |
Ryan CJ, Shah S, Efstathiou E, Smith MR, Taplin ME, Bubley GJ , et al. Phase II study of abiraterone acetate in chemotherapynaive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clin Cancer Res 2011; 17:4854-61.
doi: 10.1158/1078-0432.CCR-11-0815
|
[2] |
Ryan CJ, Smith MR, Fong L, Rosenberg JE, Kantoff P, Raynaud F , et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J Clin Oncol 2010; 28:1481-8.
doi: 10.1200/JCO.2009.24.1281
|
[3] |
Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E , et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 2010; 375:1437-46.
doi: 10.1016/S0140-6736(10)60172-9
|
[4] |
Scher HI, Fizazi K, Saad F, Taplin ME, Steinburg C, Miller K , et al. Effect of MDV3100, an androgen receptor signaling inhibitor (ARSI), on overall survivial in patients with prostate cancer postdocetaxel: results from the phase III AFFIRM study. J Clin Oncol 2012; 30(5_suppl). https://doi.org/10.1200/jco. 2012.30.5_suppl.lba1.
|
[5] |
Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH , et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24:3089-94.
doi: 10.1200/JCO.2005.04.5252
|
[6] |
Fiandalo MV, Wu W, Mohler JL . The role of intracrine androgen metabolism, androgen receptor and apoptosis in the survival and recurrence of prostate cancer during androgen deprivation therapy. Curr Drug Targets 2013; 14:420-40.
doi: 10.2174/1389450111314040004
|
[7] |
Mohler JL, Gregory CW, Ford 3rd OH, Kim D, Weaver CM, Petrusz P , et al. The androgen axis in recurrent prostate cancer. Clin Cancer Res 2004; 10:440-8.
doi: 10.1158/1078-0432.CCR-1146-03
|
[8] |
Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB , et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 2011; 71:1486-96.
doi: 10.1158/0008-5472.CAN-10-1343
|
[9] |
Auchus RJ . The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 2004; 15:432-8.
doi: 10.1016/j.tem.2004.09.004
|
[10] |
Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL . Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005; 11:4653-7.
doi: 10.1158/1078-0432.CCR-05-0525
|
[11] |
Chang KH, Li R, Papari-Zareei M, Watumull L, Zhao YD, Auchus RJ , et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc Natl Acad Sci USA 2011; 108:13728-33.
doi: 10.1073/pnas.1107898108
|
[12] |
Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J , et al. A gain-of-function mutation in DHT synthesis in castrationresistant prostate cancer. Cell 2013; 154:1074-84.
doi: 10.1016/j.cell.2013.07.029
|
[13] |
Penning T . Androgen biosynthesis in castration resistant prostate cancer. Endocr Relat Cancer 2014; 21:T67-78.
doi: 10.1530/ERC-14-0109
|
[14] |
Chang KH, Sharifi N . Prostate cancerdfrom steroid transformations to clinical translation. Nat Rev Urol 2012; 9:721-4.
doi: 10.1038/nrurol.2012.175
|
[15] |
Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I , et al. Prostate cancer. Lancet 2016; 387:70-82.
doi: 10.1016/S0140-6736(14)61947-4
|
[16] |
Mostaghel EA, Plymate SR, Montgomery B . Molecular pathways: targeting resistance in the androgen receptor for therapeutic benefit. Clin Cancer Res 2014; 20:791-8.
doi: 10.1158/1078-0432.CCR-12-3601
|
[17] |
Fankhauser M, Tan Y, Macintyre G, Haviv I, Hong MK, Nguyen A , et al. Canonical androstenedione reduction is the predominant source of signaling androgens in hormonerefractory prostate cancer. Clin Cancer Res 2014; 20:5547-57.
doi: 10.1158/1078-0432.CCR-13-3483
|
[18] |
Huggins C, Scott WW . Bilateral adrenalectomy in prostatic cancer: clinical features and urinary excretion of 17- ketosteroids and estrogen. Ann Surg 1945; 122:1031-41.
doi: 10.1097/00000658-194512260-00012
|
[19] |
Thorne GW, Forsham PH, Frawley TF, Hill Jr SR, Roche M, Staehelin D , et al. The clinical usefulness of ACTH and cortisone. N Engl J Med 1950; 242:824-34.
doi: 10.1056/NEJM195005252422105
|
[20] |
Huggins C, Bergenstal DM . Surgery of the adrenals. J Am Med Assoc 1951; 147:101-6.
doi: 10.1001/jama.1951.03670190001001
|
[21] |
Havlin KA, Trump DL . Aminoglutethimide: theoretical considerations and clinical results in advanced prostate cancer. Cancer Treat Res 1988; 39:83-96.
doi: 10.1007/978-1-4613-1731-9
|
[22] |
Dexter RN, Fishman LM, Ney RL, Liddle GW . Inhibition of adrenal corticosteroid synthesis by aminoglutethimide: studies of the mechanism of action. J Clin Endocrinol Metab 1967; 27:473-80.
doi: 10.1210/jcem-27-4-473
|
[23] |
Trump DL, Havlin KH, Messing EM, Cummings KB, Lange PH, Jordan VC . High-dose ketoconazole in advanced hormonerefractory prostate cancer: endocrinologic and clinical effects. J Clin Oncol 1989; 7:1093-8.
doi: 10.1200/JCO.1989.7.8.1093
|
[24] |
De Coster R, Caers I, Coene MC, Amery W, Beerens D, Haelterman C . Effects of high dose ketoconazole therapy on the main plasma testicular and adrenal steroids in previously untreated prostatic cancer patients. Clin Endocrinol (Oxf) 1986; 24:657-64.
doi: 10.1111/j.1365-2265.1986.tb01662.x
|
[25] |
Trachtenberg J, Zadra J . Steroid synthesis inhibition by ketoconazole: sites of action. Clin Invest Med 1988; 11:1-5.
|
[26] |
Ahmann FR, Crawford ED, Kreis W, Levasseur Y . Adrenal steroid levels in castrated men with prostatic carcinoma treated with aminoglutethimide plus hydrocortisone. Cancer Res 1987; 47:4736-9.
|
[27] |
Keizman D, Huang P, Carducci MA, Eisenberger MA . Contemporary experience with ketoconazole in patients with metastatic castration-resistant prostate cancer: clinical factors associated with PSA response and disease progression. Prostate 2012; 72:461-7.
doi: 10.1002/pros.21447
|
[28] |
Attard G, Reid AH, A’Hern R, Parker C, Oommen NB, Folkerd E , et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J Clin Oncol 2009; 27:3742-8.
doi: 10.1200/JCO.2008.20.0642
|
[29] |
Jarman M, Barrie SE, Llera JM . The 16,17-double bond is needed for irreversible inhibition of human cytochrome p45017alpha by abiraterone (17-(3-pyridyl)androsta-5, 16- dien-3beta-ol) and related steroidal inhibitors. J Med Chem 1998; 41:5375-81.
doi: 10.1021/jm981017j
|
[30] |
de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L , et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364:1995-2005.
doi: 10.1056/NEJMoa1014618
|
[31] |
Scher HI, Heller G, Molina A, Kheoh T, Attard G, Moreira J , et al. Evaluation of circulating tumor cell (CTC) enumeration as an efficacy response biomarker of overall survivial (OS) in metastatic castration-resistant prostate cancer (mCRPC); Planned final analysis (FA) of Cou-AA-301, a randomized double-blind, placebo-controlled phase III study of abiraterone acetate (AA) plus low-dose prednisone (P) post docetaxel. J Clin Oncol 2011; 29(18_suppl). https://doi.org/10. 1200/jco.2011.29.18_suppl.lba4517.
|
[32] |
Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P , et al. Abiraterone inmetastatic prostate cancerwithout previous chemotherapy. N Engl J Med 2013; 368:138-48.
doi: 10.1056/NEJMoa1209096
|
[33] |
Reid AH, Attard G, Danila DC, Oommen NB, Olmos D, Fong PC , et al. Significant and sustained antitumor activity in postdocetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J Clin Oncol 2010; 28:1489-95.
doi: 10.1200/JCO.2009.24.6819
|
[34] |
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY , et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017; 377:352-60.
doi: 10.1056/NEJMoa1704174
|
[35] |
Cavo A, Rubagotti A, Zanardi E, Fabbroni C, Zinoli L, Di Meglio A , et al. Abiraterone acetate and prednisone in the pre- and post-docetaxel setting for metastatic castrationresistant prostate cancer: a mono-institutional experience focused on cardiovascular events and their impact on clinical outcomes. Ther Adv Med Oncol 2018; 10. https://doi.org/10. 1177/1758834017745819.
|
[36] |
Attard G, Reid AH, Auchus RJ, Hughes BA, Cassidy AM, Thompson E , et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab 2012; 97:507-6.
doi: 10.1210/jc.2011-2189
|
[37] |
Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM , et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011; 17:5913-25.
doi: 10.1158/1078-0432.CCR-11-0728
|
[38] |
Tamae D, Mostaghel E, Montgomery B, Nelson PS, Balk SP, Kantoff PW , et al. The DHEA-sulfate depot following P450c17 inhibition supports the case for AKR1C3 inhibition in high risk localized and advanced castration resistant prostate cancer. Chem Biol Interact 2015; 234:332-8.
doi: 10.1016/j.cbi.2014.12.012
|
[39] |
Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA , et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71:6503-13.
doi: 10.1158/0008-5472.CAN-11-0532
|
[40] |
Bremmer F, Jarry H, Strauss A, Behnes CL, Trojan L, Thelen P . Increased expression of CYP17A1 indicates an effective targeting of the androgen receptor axis in castration resistant prostate cancer (CRPC). Springerplus 2014; 3:574.
doi: 10.1186/2193-1801-3-574
|
[41] |
Silverman RB . The potential use of mechanism-based enzyme inactivators in medicine. J Enzyme Inhib 1988; 2:73-90.
doi: 10.3109/14756368809040714
|
[42] |
Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA , et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71:6503-13.
doi: 10.1158/0008-5472.CAN-11-0532
|
[43] |
Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J , et al. A gain-of-function mutation in DHT synthesis in castrationresistant prostate cancer. Cell 2013; 154:1074-84.
doi: 10.1016/j.cell.2013.07.029
|
[44] |
Nixon M, Andrew R, Chapman KE . It takes two to tango: dimerisation of glucocorticoid receptor and its antiinflammatory functions. Steroids 2013; 78:59-68.
doi: 10.1016/j.steroids.2012.09.013
|
[45] |
Roy AB . The steroid 5 alpha-reductase activity of rat liver and prostate. Biochimie 1971; 53:1031-40.
doi: 10.1016/S0300-9084(71)80071-8
|
[46] |
Azzouni F, Godoy A, Li Y, Mohler J . The 5alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2012; 2012:530121.
|
[47] |
Titus MA, Li Y, Kozyreva OG, Maher V, Godoy A, Smith GJ , et al. 5alpha-reductase type 3 enzyme in benign and malignant prostate. Prostate 2014; 74:235-49.
doi: 10.1002/pros.22745
|
[48] |
Godoy A, Kawinski E, Li Y, Oka D, Alexiev B, Azzouni F , et al. 5alpha-reductase type 3 expression in human benign and malignant tissues: a comparative analysis during prostate cancer progression. Prostate 2011; 71:1033-46.
doi: 10.1002/pros.v71.10
|
[49] |
Fleshner NE, Trachtenberg J . Combination finasteride and flutamide in advanced carcinoma of the prostate: effective therapy with minimal side effects. J Urol 1995; 154:1642-5. discussion 1645e6.
doi: 10.1016/S0022-5347(01)66734-X
|
[50] |
Leibowitz RL, Tucker SJ . Treatment of localized prostate cancer with intermittent triple androgen blockade: preliminary results in 110 consecutive patients. Oncologist 2001; 6:177-82.
doi: 10.1634/theoncologist.6-2-177
|
[51] |
Dutkiewicz SA . Comparison of maximal and more maximal intermittent androgen blockade during 5-year treatment of advanced prostate cancer T3NxMx-1. Int Urol Nephrol 2012; 44:487-92.
doi: 10.1007/s11255-011-0051-6
|
[52] |
Tay MH, Kaufman DS, Regan MM, Leibowitz SB, George DJ, Febbo PG , et al. Finasteride and bicalutamide as primary hormonal therapy in patients with advanced adenocarcinoma of the prostate. Ann Oncol 2004; 15:974-8.
doi: 10.1093/annonc/mdh221
|
[53] |
Ornstein DK, Rao GS, Johnson B, Charlton ET, Andriole GL . Combined finasteride and flutamide therapy in men with advanced prostate cancer. Urology 1996; 48:901-5.
doi: 10.1016/S0090-4295(96)00315-9
|
[54] |
Shah S, Trump D, Sartor O, Tan W, Wilding G, Mohler J . Phase II study of dutasteride for recurrent prostate cancer during androgen deprivation therapy. J Urol 2009; 181:621-6.
|
[55] |
Wurzel R, Ray P, Major-Walker K, Shannon J, Rittmaster R . The effect of dutasteride on intraprostatic dihydrotestosterone concentrations in men with benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 2007; 10:149-54.
|
[56] |
Yamana K, Labrie F, Luu-The V . Human type 3 5alpha-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride. Horm Mol Biol Clin Invest 2010; 2:293-9.
|
[57] |
Shah SK, Trump DL, Sartor O, Tan W, Wilding GE, Mohler JL . Phase II study of Dutasteride for recurrent prostate cancer during androgen deprivation therapy. J Urol 2009; 181:621-6.
|
[58] |
Day JM, Tutill HJ, Purohit A, Reed MJ . Design and validation of specific inhibitors of 17beta-hydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis. Endocr Relat Cancer 2008; 15:665-92.
doi: 10.1677/ERC-08-0042
|
[59] |
Auchus RJ, Yu MK, Nguyen S, Mundle SD . Use of prednisone with abiraterone acetate in metastatic castration-resistant prostate cancer. Oncologist 2014; 19:1231-40.
doi: 10.1634/theoncologist.2014-0167
|
[60] |
Li J, Alyamani M, Zhang A, Chang KH, Berk M, Li Z , et al. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife 2017; 6. https://doi.org/10.7554/eLife.20183.
|
[61] |
Snaterse G, Visser JA, Arlt W, Hofland J . Circulating steroid hormone variations throughout different stages of prostate cancer. Endocr Relat Cancer 2017; 24:R403-20.
doi: 10.1530/ERC-17-0155
|
[62] |
Fiandalo MV, Stocking JJ, Pop EA, Wilton JH, Mantione KM, Li Y , et al. Inhibition of dihydrotestosterone synthesis in prostate cancer by combined frontdoor and backdoor pathway blockade. Oncotarget 2017; 9:11227-42.
|
[63] |
Tanaka N . SDR: structure, mechanism of action, and substrate recognition. Curr Org Chem 2001; 5. 89-11.
doi: 10.2174/1385272013375751
|
[64] |
Biswas MG, Russell DW . Expression cloning and characterization of oxidative 17beta- and 3alpha-hydroxysteroid dehydrogenases from rat and human prostate. J Biol Chem 1997; 272:15959-66.
doi: 10.1074/jbc.272.25.15959
|
[65] |
Kavanagh KL, Jornvall H, Persson B, Oppermann U . Mediumand short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008; 65:3895-906.
doi: 10.1007/s00018-008-8588-y
|
[66] |
Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD , et al. The SDR (short-chain dehydrogenase/ reductase and related enzymes) nomenclature initiative. Chem Biol Interact 2009; 178:94-8.
doi: 10.1016/j.cbi.2008.10.040
|
[67] |
Fiandalo MV, Wilton J, Mohler JL . Roles for the backdoor pathway of androgenmetabolismin prostate cancer response to castration and drug treatment. Int J Biol Sci 2014; 10:596-601.
doi: 10.7150/ijbs.8780
|
[68] |
Mohler JL, Titus MA, Wilson EM . Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone. Clin Cancer Res 2011; 17:5844-9.
doi: 10.1158/1078-0432.CCR-11-0644
|
[69] |
Liu C, Lou W, Zhu Y, Yang JC, Nadiminty N, Gaikwad NW , et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res 2015; 75:1413-22.
doi: 10.1158/0008-5472.CAN-14-3080
|
[70] |
Loriot Y, Fizazi K, Jones RJ, Van den Brande J, Molife RL, Omlin A , et al. Safety, tolerability and anti-tumour activity of the androgen biosynthesis inhibitor ASP9521 in patients with metastatic castration-resistant prostate cancer: multi-centre phase I/II study. Invest New Drugs 2014; 32:995-1004.
doi: 10.1007/s10637-014-0101-x
|
[71] |
Mohler JL . Concept and viability of androgen annihilation for advanced prostate cancer. Cancer 2014; 120:2628-37.
doi: 10.1002/cncr.28675
|
[1] |
Gwenaelle Gravis. Systemic treatment for metastatic prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 162-168. |
[2] |
Michel Bolla,Ann Henry,Malcom Mason,Thomas Wiegel. The role of radiotherapy in localised and locally advanced prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 153-161. |
[3] |
Tyler Etheridge,Shivashankar Damodaran,Adam Schultz,Kyle A. Richards,Joseph Gawdzik,Bing Yang,Vincent Cryns,David F. Jarrard. Combination therapy with androgen deprivation for hormone sensitive prostate cancer: A new frontier[J]. Asian Journal of Urology, 2019, 6(1): 57-64. |
[4] |
Haley Dicken,Patrick J. Hensley,Natasha Kyprianou. Prostate tumor neuroendocrine differentiation via EMT: The road less traveled[J]. Asian Journal of Urology, 2019, 6(1): 82-90. |
[5] |
Per-Anders Abrahamsson. Intermittent androgen deprivation therapy in patients with prostate cancer:Connecting the dots[J]. Asian Journal of Urology, 2017, 4(4): 208-222. |
[6] |
Dingwei Ye, Yiran Huang, Fangjian Zhou, Keji Xie, Vsevolod Matveev, Changling Li, Boris Alexeev, Ye Tian, Mingxing Qiu, Hanzhong Li, Tie Zhou, Peter De Porre, Margaret Yu, Vahid Naini, Hongchuan Liang, Zhuli Wu, Yinghao Sun. A phase 3, double-blind, randomized placebo-controlled efficacy and safety study of abiraterone acetate in chemotherapynaïve patients with mCRPC in China, Malaysia, Thailand and Russia[J]. Asian Journal of Urology, 2017, 4(2): 75-85. |
[7] |
Cameron M. Armstrong, Allen C. Gao. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer[J]. Asian Journal of Urology, 2016, 3(4): 185-194. |
|
|
|
|