|
|
Current progress and questions in germline genetics of prostate cancer |
William B. Isaacsa,*(),Jianfeng Xub
|
a Brady Urological Institute, Johns Hopkins University, School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA b North Shore University Health System, Research Institute, Evanston, IL, USA |
|
|
Abstract Dramatic progress has been made in the area of germline genetics of prostate cancer (PCa) in the past decade. Both common and rare genetic variants with effects on risk ranging from barely detectable to outright practice-changing have been identified. For men with high risk PCa, the application of genetic testing for inherited pathogenic mutations is becoming standard of care. A major question exists about which additional populations of men to test, as men at all risk levels can potentially benefit by knowing their unique genetic profile of germline susceptibility variants. This article will provide a brief overview of some current issues in understanding inherited susceptibility for PCa.
|
Received: 10 July 2018
Available online: 02 November 2018
|
Corresponding Authors:
William B. Isaacs
E-mail: wisaacs@jhmi.edu
|
|
|
[1] |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65:87-108.
doi: 10.3322/caac.21262
|
[2] |
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M , et al. Environmental and heritable factors in the causation of cancerdanalyses of cohorts of twins. N Engl J Med 2000; 343:78-85.
doi: 10.1056/NEJM200007133430201
|
[3] |
Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T , et al. Familial risk and heritability of cancer among twins in Nordic countries. J Am Med Assoc 2016; 315:68-76.
doi: 10.1001/jama.2015.17703
|
[4] |
Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ , et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 2018; 50:928-36.
doi: 10.1038/s41588-018-0142-8
|
[5] |
Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G , et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008; 358:910-9.
doi: 10.1056/NEJMoa075819
|
[6] |
Conran CA, Na R, Chen H, Jiang D, Lin X, Zheng SL , et al. Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer. Asian J Androl 2016; 18:520-4.
doi: 10.4103/1008-682X.179527
|
[7] |
Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y , et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014; 46:1103-9.
doi: 10.1038/ng.3094
|
[8] |
Kader AK, Sun J, Reck BH, Newcombe PJ, Kin ST, Hsu FC , et al. Potential impact of adding genetic markers to clinical parameters in predicting prostate biopsy outcomes in men following an initial negative biopsy: findings from the REDUCE trial. Eur Urol 2012; 62:953-61.
doi: 10.1016/j.eururo.2012.05.006
|
[9] |
Chen H, Na R, Packiam VT, Conran CA, Jiang D, Tao S , et al. Reclassification of prostate cancer risk using sequentially identified SNPs: results from the REDUCE trial. Prostate 2017; 77:1179-86.
doi: 10.1002/pros.v77.11
|
[10] |
Sun J, Na R, Hsu FC, Zheng SL, Wiklund F, Condreay LD , et al. Genetic score is an objective and better measurement of inherited risk of prostate cancer than family history. Eur Urol 2013; 63:585-7.
doi: 10.1016/j.eururo.2012.11.047
|
[11] |
Chen H, Liu X, Brendler CB, Ankerst DP, Leach RJ, Goodman PJ , et al. Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: results from the prostate cancer prevention trial. Prostate 2016; 76:1120-9.
doi: 10.1002/pros.v76.12
|
[12] |
Jiang H, Liu F, Wang Z, Na R, Zhang L, Wu Y , et al. Prediction of prostate cancer from prostate biopsy in Chinese men using a genetic score derived from 24 prostate cancer riskassociated SNPs. Prostate 2013; 73:1651-9.
|
[13] |
Ren S, Xu J, Zhou T, Jiang H, Chen H, Liu F , et al. Plateau effect of prostate cancer risk-associated SNPs in discriminating prostate biopsy outcomes. Prostate 2013; 73:1824-35.
doi: 10.1002/pros.v73.16
|
[14] |
Gronberg H, Adolfsson J, Aly M, Nordstr?m T, Wiklund P, Brandberg Y , et al. Prostate cancer screening in men aged 50e69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol 2015; 16:1667-76.
doi: 10.1016/S1470-2045(15)00361-7
|
[15] |
Lecarpentier J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J , McGuffog L, et al. Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores. J Clin Oncol 2017; 35:2240-50.
doi: 10.1200/JCO.2016.69.4935
|
[16] |
Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN , et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat Commun 2018; 9:2256.
doi: 10.1038/s41467-018-04109-8
|
[17] |
Helfand BT, Roehl KA, Cooper PR , McGuire BB, Fitzgerald LM, Cancel-Tassin G, et al. Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Hum Genet 2015; 134:439-50.
doi: 10.1007/s00439-015-1534-9
|
[18] |
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM , et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161:1215-28.
doi: 10.1016/j.cell.2015.05.001
|
[19] |
Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H , et al. Inherited DNA repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016; 375:443-53.
doi: 10.1056/NEJMoa1603144
|
[20] |
Sigurdsson S, Thorlacius S, Tomasson J, Tryggvadottir L, Benediktsdottir K, Eyfj?rd JE , et al. BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med (Berl) 1997; 75:758-61.
doi: 10.1007/s001090050162
|
[21] |
Narod SA, Neuhausen S, Vichodez G, Armel S, Lynch HT, Ghadirian P , et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 2008; 99:371-4.
|
[22] |
Mitra A, Fisher C, Foster CS, Jameson C, Barbachanno Y, Bartlett J , et al. Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype. Br J Cancer 2008; 98:502-7.
|
[23] |
Edwards SM, Evans DGR, Hope Q, Norman AR, Barbachano Y, Bullock S , et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 2010; 103:918-24.
|
[24] |
Gallagher DJ, Gaudet MM, Pal P, Kirchhoff T, Balistreri L, Vora K , et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010; 16:2115-21.
doi: 10.1158/1078-0432.CCR-09-2871
|
[25] |
Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M , et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013; 31:1748-57.
doi: 10.1200/JCO.2012.43.1882
|
[26] |
Castro E, Goh C, Leongamornlert D, Saunders E, Tymrakiewicz M, Dadaev T , et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol 2015; 68:186-93.
doi: 10.1016/j.eururo.2014.10.022
|
[27] |
Maier C, Herkommer K, Luedeke M, Rinckleb A, Schrader M, Vogel W . Subgroups of familial and aggressive prostate cancer with considerable frequencies of BRCA2 mutations. Prostate 2014; 74:1444-51.
doi: 10.1002/pros.v74.14
|
[28] |
Akbari MR, Wallis CJD, Toi A, Trachtenberg J, Sun P, Narod S A , et al. The impact of a BRCA2 mutation on mortality from screen-detected prostate cancer. Br J Cancer 2014; 111:1238-40.
|
[29] |
Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N , et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 2011; 105:1230-4.
|
[30] |
Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P , et al. Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 2003; 72:1-12.
doi: 10.1086/345310
|
[31] |
Agalliu I, Kwon EM, Zadory D , McIntosh L, Thompson J, Stanford JL, et al. Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res 2007; 13:839-43.
doi: 10.1158/1078-0432.CCR-06-2164
|
[32] |
Sinclair CS, Berry R, Schaid D, Thibodeau SN, Couch FJ . BRCA1 and BRCA2 have a limited role in familial prostate cancer. Cancer Res 2000; 60:1371-5.
|
[33] |
Na R, Zheng SL, Han M, Yu H, Jiang D, Shah S , et al. Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol 2017; 71:740-7.
doi: 10.1016/j.eururo.2016.11.033
|
[34] |
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez- Lopez R , et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015; 373:1697-708.
doi: 10.1056/NEJMoa1506859
|
[35] |
Giri VN, Knudsen KE, Kelly WK, Abida W, Andriole GL, Bangma CH , et al. Role of genetic testing for inherited prostate cancer risk: Philadelphia Prostate Cancer Consensus Conference 2017. J Clin Oncol 2018; 36:414-24.
|
[36] |
Lindstr?m LS, Hall P, Hartman M, Wiklund F, Gr?nberg H, Czene K . Familial concordance in cancer survival: a Swedish population-based study. Lancet Oncol 2007; 8:1001-6.
doi: 10.1016/S1470-2045(07)70282-6
|
[37] |
Liu W, Chang B, Sauvageot J, Dimitrov L, Gielzak M, Li T , et al. Comprehensive assessment of DNA copy number alterations in human prostate cancers using Affymetrix 100K SNP mapping array. Genes Chromosomes Cancer 2006; 45:1018-32.
doi: 10.1002/gcc.v45:11
|
[38] |
Liu W, Chang BL, Cramer S, Koty PP, Li T, Sun J , et al. Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clinical Cancer Res 2007; 13:5028-33.
doi: 10.1158/1078-0432.CCR-07-0300
|
[39] |
Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P , et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 2007; 67:8504-10.
doi: 10.1158/0008-5472.CAN-07-0673
|
[40] |
Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y , et al. Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 2008; 10:897-907.
doi: 10.1593/neo.08428
|
[41] |
Sun J, Liu W, Adams TS, Sun J, Li X, Turner AR , et al. DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 2007; 67:692-700.
doi: 10.1002/(ISSN)1097-0045
|
[42] |
Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G , et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 2009; 15:559-65.
|
[43] |
Castro P, Creighton CJ, Ozen M, Berel D, Mims MP, Ittmann M . Genomic profiling of prostate cancers from African American men. Neoplasia 2009; 11:305-12.
doi: 10.1593/neo.81530
|
[44] |
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS , et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18:11-22.
doi: 10.1016/j.ccr.2010.05.026
|
[45] |
Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J , et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463:899-905.
doi: 10.1038/nature08822
|
[46] |
Rose AE, Satagopan JM, Oddoux C, Zhou Q, Xu R, Olshen AB , et al. Copy number and gene expression differences between African American and Caucasian American prostate cancer. J Trans Med 2010; 8:70.
doi: 10.1186/1479-5876-8-70
|
[47] |
Liu W, Lindberg J, Sui G, Luo J, Egevad L, Li T , et al. Identi- fication of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene 2012; 31:3939-48.
|
[48] |
Liu W, Xie CC, Thomas CY, Kim ST, Lindberg J, Egevad L , et al. Genetic markers associated with early cancer-specific mortality following prostatectomy. Cancer 2013; 119:2405-12.
doi: 10.1002/cncr.27954
|
[49] |
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW , et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310:644-8.
doi: 10.1126/science.1117679
|
[50] |
Cerveira N, Ribeiro FR, Peixoto A, Costa V, Henrique R, Jerónimo C , et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 2006; 8:826-32.
doi: 10.1593/neo.06427
|
[51] |
Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J . TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgendependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 2006; 66:10658-63.
doi: 10.1158/0008-5472.CAN-06-1871
|
[52] |
Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panaqopoulos I . Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 2006; 45:717-9.
doi: 10.1002/(ISSN)1098-2264
|
[53] |
Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS , et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007; 448:595-9.
doi: 10.1038/nature06024
|
[54] |
Liu W, Ewing CM, Chang BL, Li T, Sun J, Turner AR , et al. Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosomes Cancer 2007; 46:972-80.
doi: 10.1002/(ISSN)1098-2264
|
[55] |
Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster CS , et al. Diversity of TMPRSS2eERG fusion transcripts in the human prostate. Oncogene 2007; 26:2667-73.
|
[56] |
Kumar-Sinha C, Tomlins SA, Chinnaiyan AM . Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008; 8:497-511.
doi: 10.1038/nrc2402
|
[57] |
Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR , et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 2008; 68:73-80.
doi: 10.1158/0008-5472.CAN-07-5352
|
[58] |
Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X , et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 2009; 458:97-101.
doi: 10.1038/nature07638
|
[59] |
Mosquera JM, Perner S, Genega EM, Sanda M, Hofer MD, Mertz KD , et al. Characterization of TMPRSS2eERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications. Clin Cancer Res 2008; 14:3380-5.
doi: 10.1158/1078-0432.CCR-07-5194
|
[60] |
Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohqi K , et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 2009; 139:1069-83.
doi: 10.1016/j.cell.2009.11.030
|
[61] |
Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B , et al. Androgen-induced TOP2B-mediated doublestrand breaks and prostate cancer gene rearrangements. Nat Genet 2010; 42:668-75.
|
[62] |
Rubin MA . ETS rearrangements in prostate cancer. Asian J Androl 2012; 14:393-9.
doi: 10.1038/aja.2011.145
|
[63] |
Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM , et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466:869-73.
doi: 10.1038/nature09208
|
[64] |
Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY , et al. The genomic complexity of primary human prostate cancer. Nature 2011; 470:214-20.
doi: 10.1038/nature09744
|
[65] |
Kumar A, White TA, MacKenzie AP, Clegg N, Lee C, Dumpit RF , et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci U S A 2011; 108:17087-92.
doi: 10.1073/pnas.1108745108
|
[66] |
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP , et al. Exome sequencing identifies recurrent spop, foxa1 and med12 mutations in prostate cancer. Nat Genet 2012; 44:685-9.
|
[67] |
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP , et al. The mutational landscape of lethal castrationresistant prostate cancer. Nature 2012; 487:239-43.
doi: 10.1038/nature11125
|
[68] |
Lindberg J, Mills IG, Klevebring D, Liu W, Neiman M, Xu J , et al. The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur Urol 2013; 63:702-8.
doi: 10.1016/j.eururo.2012.11.053
|
[69] |
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y , et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153:666-77.
doi: 10.1016/j.cell.2013.03.021
|
[70] |
Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S , et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 2013; 23:159-70.
doi: 10.1016/j.ccr.2013.01.002
|
[71] |
Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman l , et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun 2014; 5:4988.
doi: 10.1038/ncomms5988
|
[72] |
Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB , et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 2015; 47:367-72.
doi: 10.1038/ng.3221
|
[73] |
Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E , et al. The evolutionary history of lethal metastatic prostate cancer. Nature 2015; 520:353-7.
doi: 10.1038/nature14347
|
[74] |
Hong MK, Macintyre G, Wedge DC, Van Loo P, Patel K, Lunke S , et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat Commun 2015; 6:6605.
doi: 10.1038/ncomms7605
|
[75] |
Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E , et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet 2015; 47:736-45.
doi: 10.1038/ng.3315
|
[76] |
Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E , et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet 2018; 50:645-51.
|
[77] |
Isaacsson Velho P, Antonarakis ES . PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol 2018; 11:475-86.
doi: 10.1080/17512433.2018.1464388
|
[78] |
Wu YM, Cieslik M, Lonigro RJ, Vats P, Reimers MA, Cao X , et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 2018; 173:1770-82.
doi: 10.1016/j.cell.2018.04.034
|
[79] |
Castro E, Jugurnauth-Little S, Karlsson Q, Al-Shahrour F, Piñeiro-Yañez E, Van de Poll F , et al. High burden of copy number alterations and c-MYC amplification in prostate cancer from BRCA2 germline mutation carriers. Ann Oncol 2015; 26:2293-300.
doi: 10.1093/annonc/mdv356
|
[80] |
Carter HB, Helfand B, Mamawala M, Wu Y, Landis P, Yu H , et al. Germline mutations in ATM and BRCA1/2 are associated with grade reclassification in men on active surveillance for prostate cancer.Eur Urol 2018. https://doi.org/10.1016/ j.eururo. 2018. 09. 021.
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[3] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[4] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[5] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[6] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[7] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[8] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[9] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[10] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[11] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[12] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
[13] |
Laurence Klotz. Contemporary approach to active surveillance for favorable risk prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 146-152. |
[14] |
Michel Bolla,Ann Henry,Malcom Mason,Thomas Wiegel. The role of radiotherapy in localised and locally advanced prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 153-161. |
[15] |
Rei Umezawa,Koji Inaba,Satoshi Nakamura,Akihisa Wakita,Hiroyuki Okamoto,Keisuke Tsuchida,Tairo Kashihara,Kazuma Kobayashi,Ken Harada,Kana Takahashi,Naoya Murakami,Yoshinori Ito,Hiroshi Igaki,Keiichi Jingu,Jun Itami. Dose escalation of external beam radiotherapy for high-risk prostate cancer—Impact of multiple high-risk factor[J]. Asian Journal of Urology, 2019, 6(2): 192-199. |
|
|
|
|