|
|
If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease |
Karen S. Sfanosa,Srinivasan Yegnasubramanianb,William G. Nelsonb,Tamara L. Lotana,Ibrahim Kulacc,Jessica L. Hicksa,Qizhi Zhenga,Charles J. Bieberichd,Michael C. Haffnera,Angelo M. De Marzoa,*()
|
a Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA b Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA c Department of Pathology, Koc Universitesi Tip Fakultesi, Istanbul, Turkey d Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA |
|
|
Abstract Antibodies are employed ubiquitously in biomedical sciences, including for diagnostics and therapeutics. One of the most important uses is for immunohistochemical (IHC) staining, a process that has been improving and evolving over decades. IHC is useful when properly employed, yet misuse of the method is widespread and contributes to the “reproducibility crisis” in science. We report some of the common problems encountered with IHC assays, and direct readers to a wealth of literature documenting and providing some solutions to this problem. We also describe a series of vignettes that include our approach to analytical validation of antibodies and IHC assays that have facilitated a number of biological insights into prostate cancer and the refutation of a controversial association of a viral etiology in gliomas. We postulate that a great deal of the problem with lack of accuracy in IHC assays stems from the lack of awareness by researchers for the critical necessity for end-users to validate IHC antibodies and assays in their laboratories, regardless of manufacturer claims or past publications. We suggest that one reason for the pervasive lack of end-user validation for research antibodies is that researchers fail to realize that there are two general classes of antibodies employed in IHC. First, there are antibodies that are “clinical grade” reagents used by pathologists to help render diagnoses that influence patient treatment. Such diagnostic antibodies, which tend to be highly validated prior to clinical implementation, are in the vast minority (e.g. < 500). The other main class of antibodies are “research grade” antibodies (now numbering >3 800 000), which are often not extensively validated prior to commercialization. Given increased awareness of the problem, both the United States, National Institutes of Health and some journals are requiring investigators to provide evidence of specificity of their antibody-based assays.
|
Received: 31 July 2018
Available online: 12 December 2018
|
Corresponding Authors:
Angelo M. De Marzo
E-mail: ademarz@jhmi.edu
|
|
|
|
False-positive AKT1 staining in double knockout cells. Original magnification ×100, and the insets are original magnification ×400.
|
|
Example of using online database search to find positive and negative control cells for ERG mRNA. (A) Cancer cell line encyclopedia RNA-seq results for ERG mRNA showing prostate cancer VCaP cells to be strongly positive; (B) IHC for ERG protein using a tissue microarray with a number of cell lines including VCaP in which there is a good correlation between mRNA and protein by IHC. ERG, ETS-related gene; IHC, immunohistochemical.
|
[1] |
Stack EC, Wang C, Roman KA, Hoyt CC . Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 2014; 70:46-58.
doi: 10.1016/j.ymeth.2014.08.016
|
[2] |
Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki-Teeri P, Hemmes A , et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep 2017; 7:15580.
doi: 10.1038/s41598-017-15798-4
|
[3] |
Tsujikawa T, Kumar S, Borkar RN, Azimi V, Thibault G, Chang YH , et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep 2017; 19:203-17.
doi: 10.1016/j.celrep.2017.03.037
|
[4] |
Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD , et al. Multiplexed ion beam imaging of human breast tumors. Nat Med 2014; 20:436-42.
doi: 10.1038/nm.3488
|
[5] |
Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B , et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 2014; 11:417-22.
|
[6] |
Levenson RM, Borowsky AD, Angelo M . Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Invest 2015; 95:397-405.
doi: 10.1038/labinvest.2015.2
|
[7] |
Angelo M . Highly multiplexed IHC in clinical tissue biopsies using multiplexed ion beam imaging. J Histotechnol 2016; 39:172.
doi: 10.1080/01478885.2016.1233749
|
[8] |
Goodman SL . The antibody horror show: an introductory guide for the perplexed. N Biotechnol 2018; 45:9-13.
doi: 10.1016/j.nbt.2018.01.006
|
[9] |
Begley CG, Ellis LM . Drug development: raise standards for preclinical cancer research. Nature 2012; 483:531-3.
doi: 10.1038/483531a
|
[10] |
Pusztai L, Hatzis C, Andre F . Reproducibility of research and preclinical validation: problems and solutions. Nat Rev Clin Oncol 2013; 10:720-4.
doi: 10.1038/nrclinonc.2013.171
|
[11] |
Baker M . Blame it on the antibodies. Nature 2015; 521:274.
doi: 10.1038/521274a
|
[12] |
Baker M . Antibody anarchy: a call to order. Nature 2015; 527:545-51.
|
[13] |
Saper CB . An open letter to our readers on the use of antibodies. J Comp Neurol 2005; 493:477-8.
doi: 10.1002/(ISSN)1096-9861
|
[14] |
Deutsch EW, Ball CA, Berman JJ, Bova GS, Brazma A, Bumgarner RE , et al. Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol 2008; 26:305-12.
|
[15] |
Fritschy JM . Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur J Neurosci 2008; 28:2365-70.
doi: 10.1111/ejn.2008.28.issue-12
|
[16] |
Anagnostou VK, Welsh AW, Giltnane JM, Siddiqui S, Liceaga C, Gustavson M , et al. Analytic variability in immunohistochemistry biomarker studies. Cancer Epidemiol Biomark Prev 2010; 19:982-91.
doi: 10.1158/1055-9965.EPI-10-0097
|
[17] |
Daneshtalab N, Doré JJE, Smeda JS . Troubleshooting tissue specificity and antibody selection: procedures in immunohistochemical studies. J Pharmacol Toxicol Methods 2010; 61:127-35.
doi: 10.1016/j.vascn.2009.12.002
|
[18] |
Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J , et al. Antibody validation. Biotechniques 2010; 48:197-209.
doi: 10.2144/000113382
|
[19] |
Holmseth S, Zhou Y, Follin-Arbelet VV, Lehre KP, Bergles DE, Danbolt NC . Specificity controls for immunocytochemistry: the antigen preadsorption test can lead to inaccurate assessment of antibody specificity. J Histochem Cytochem 2012; 60:174-87.
doi: 10.1369/0022155411434828
|
[20] |
Rimm D, Schalper K, Pusztai L . Unvalidated antibodies and misleading results. Breast Cancer Res Treat 2014; 147:457-8.
doi: 10.1007/s10549-014-3061-0
|
[21] |
Voskuil J . Commercial antibodies and their validation. F1000Res 2014; 3:232.
doi: 10.12688/f1000research
|
[22] |
Weller MG . Quality issues of research antibodies. Anal Chem Insights 2016; 11:21-7.
|
[23] |
Andersson S, Sundberg M, Pristovsek N, Ibrahim A, Jonsson P, Katona B , et al. Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 2017; 8:15840.
doi: 10.1038/ncomms15840
|
[24] |
Goodman SL . The path to VICTORy - a beginner’s guide to success using commercial research antibodies. J Cell Sci 2018; 131(10) pii: jcs216416. https://doi.org/10.1242/jcs.216416.
|
[25] |
Uhlén M, Bj?rling E, Agaton C, Szigyarto CAK, Amini B, Andersen E , et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteom 2005; 4:1920-32.
doi: 10.1074/mcp.M500279-MCP200
|
[26] |
Berglund L, Bj?rling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CAK , et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol Cell Proteom 2008; 7:2019-27.
doi: 10.1074/mcp.R800013-MCP200
|
[27] |
Pontén F, Jirstr?m K, Uhlen M . The human protein atlasda tool for pathology. J Pathol: J Pathol Soc G B Irel 2008; 216:387-93.
|
[28] |
Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M , et al. Towards a knowledge-based human protein atlas. Nat Biotechnol 2010; 28:1248-50.
doi: 10.1038/nbt1210-1248
|
[29] |
Fitzgibbons PL, Bradley LA, Fatheree LA, Alsabeh R, Fulton RS, Goldsmith JD , et al. Principles of analytic validation of immunohistochemical assays: Guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med 2014; 138:1432-43.
doi: 10.5858/arpa.2013-0610-CP
|
[30] |
Lotan TL, Gurel B, Sutcliffe S, Esopi D, Liu W, Xu J , et al. PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res 2011; 17:6563-73.
doi: 10.1158/1078-0432.CCR-11-1244
|
[31] |
Yu SH, Zheng Q, Esopi D, Macgregor-Das A, Luo J, Antonarakis ES , et al. A paracrine role for IL6 in prostate cancer patients: lack of production by primary or metastatic tumor cells. Cancer Immunol Res 2015; 3:1175-84.
doi: 10.1158/2326-6066.CIR-15-0013
|
[32] |
Goodman SL, Grote HJ, Wilm C . Matched rabbit monoclonal antibodies against av-series integrins reveal a novel avb3- LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open 2012; 1:329-40.
doi: 10.1242/bio.2012364
|
[33] |
Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS , et al. Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry, and in situ hybridization. Clin Cancer Res 2017; 23:3150-7.
doi: 10.1158/1078-0432.CCR-16-1490
|
[34] |
Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM . MYC and prostate cancer. Genes Cancer 2010; 1:617-28.
doi: 10.1177/1947601910379132
|
[35] |
Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C , et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008; 21:1156-67.
doi: 10.1038/modpathol.2008.111
|
[36] |
Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R , et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4:223-38.
doi: 10.1016/S1535-6108(03)00197-1
|
[37] |
Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL , et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS One 2010; 5:e9427.
doi: 10.1371/journal.pone.0009427
|
[38] |
Koh CM, Gurel B, Sutcliffe S, Aryee MJ, Schultz D, Iwata T , et al. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol 2011; 178:1824-34.
doi: 10.1016/j.ajpath.2010.12.040
|
[39] |
De Marzo AM, Meeker AK, Epstein JI, Coffey DS . Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998; 153:911-9.
doi: 10.1016/S0002-9440(10)65632-5
|
[40] |
De Marzo AM, Nelson WG, Meeker AK, Coffey DS . Stem cell features of benign and malignant prostate epithelial cells. J Urol 1998; 160:2381-92.
doi: 10.1016/S0022-5347(01)62196-7
|
[41] |
De Marzo AM, Coffey DS, Nelson WG . New concepts in tissue specificity for prostate cancer and benign prostatic hyperplasia. Urology 1999; 53:29-39.
doi: 10.1016/S0090-4295(98)00536-6
|
[42] |
Trabzonlu L, Kulac I, Zheng Q, Hicks JL, Haffner MC, Nelson WG , et al. Molecular pathology of high grade prostatic intraepithelial neoplasia: challenges and opportunities. Cold Spring Harbor Perspectives in Medicine n.d.
|
[43] |
Zhang D, Park D, Zhong Y, Lu Y, Rycaj K, Gong S , et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat Commun 2016; 7:10798.
doi: 10.1038/ncomms10798
|
[44] |
Perren A, Weng LP, Boag AH, Ziebold U, Thakore K, Dahia PL , et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am J Pathol 1999; 155:1253-60.
doi: 10.1016/S0002-9440(10)65227-3
|
[45] |
Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA , et al. Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 2000; 92:924-30.
doi: 10.1093/jnci/92.11.924
|
[46] |
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA , et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-34.
doi: 10.1038/nrurol.2018.9
|
[47] |
Gumuskaya B, Gurel B, Fedor H, Tan HL, Weier CA, Hicks JL , et al. Assessing the order of critical alterations in prostate cancer development and progression by IHC: further evidence that PTEN loss occurs subsequent to ERG gene fusion. Prostate Cancer Prostatic Dis 2013; 16:209-15.
doi: 10.1038/pcan.2013.8
|
[48] |
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y , et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153:666-77.
doi: 10.1016/j.cell.2013.03.021
|
[49] |
Krohn A, Freudenthaler F, Harasimowicz S, Kluth M, Fuchs S, Burkhardt L , et al. Heterogeneity and chronology of PTEN deletion and ERG fusion in prostate cancer. Mod Pathol 2014; 27:1612-20.
doi: 10.1038/modpathol.2014.70
|
[50] |
Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA , et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest 2013; 123:4918-22.
doi: 10.1172/JCI70354
|
[51] |
Haffner MC, Weier C, Xu MM, Vaghasia A, Gürel B, Gümüskaya B , et al. Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization. J Pathol 2016; 238:31-41.
doi: 10.1002/path.4628
|
[52] |
Lotan TL, Carvalho FL, Peskoe SB, Hicks JL, Good J, Fedor H , et al. PTEN loss is associated with upgrading of prostate cancer from biopsy to radical prostatectomy. Mod Pathol 2015; 28:128-37.
|
[53] |
Guedes LB, Tosoian JJ, Hicks J, Ross AE, Lotan TL . PTEN loss in Gleason score 3t 4 Z 7 prostate biopsies is associated with nonorgan confined disease at radical prostatectomy. J Urol 2017; 197:1054-9.
doi: 10.1016/j.juro.2016.09.084
|
[54] |
Guedes LB, Morais CL, Fedor H, Hicks J, Gurel B, Melamed J , et al. Effect of preanalytic variables on an automated PTEN immunohistochemistry assay for prostate cancer. Arch Pathol Lab Med 2018. https://doi.org/10.5858/arpa.2018-0068-OA.
|
[55] |
Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA , et al. Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006; 2:e25.
doi: 10.1371/journal.ppat.0020025
|
[56] |
Sfanos KS, Aloia AL, De Marzo AM, Rein A . XMRV and prostate cancerda “final” perspective. Nat Rev Urol 2012; 9:111-8.
doi: 10.1038/nrurol.2011.225
|
[57] |
Schlaberg R, Choe DJ, Brown KR, Thaker HM, Singh IR . XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. Proc Natl Acad Sci USA 2009; 106:16351-6.
doi: 10.1073/pnas.0906922106
|
[58] |
Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, Peterson DL , et al. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 2009;326:585-9. Erratum in: Science. 2011;334:176. Retraction in: Alberts B. Science. 2011;334:1636.
doi: 10.1126/science.1179052
|
[59] |
Aloia AL, Sfanos KS, Isaacs WB, Zheng Q, Maldarelli F, De Marzo AM , et al. XMRV: a new virus in prostate cancer? Cancer Res 2010; 70:10028-33.
doi: 10.1158/0008-5472.CAN-10-2837
|
[60] |
Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB . A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008; 68:306-20.
doi: 10.1002/(ISSN)1097-0045
|
[61] |
Paprotka T, Delviks-Frankenberry KA, Cing?z O, Martinez A, Kung HJ, Tepper CG , et al. Recombinant origin of the retrovirus XMRV. Science 2011; 333:97-101.
doi: 10.1126/science.1205292
|
[62] |
Silverman RH, Das Gupta J, Lombardi VC, Ruscetti FW, Pfost MA, Hagen KS , et al. Partial retraction. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 2011; 334:176.
|
[63] |
Alberts B . Retraction. Science 2011; 334:1636.
|
[64] |
Schlaberg R, Choe DJ, Brown KR, Thaker HM, Singh IR . Retraction for Schlaberg et al., XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. Proc Natl Acad Sci USA 2014; 111:12270.
doi: 10.1073/pnas.1409186111
|
[65] |
Hempel HA, Burns KH, De Marzo AM, Sfanos KS . Infection of xenotransplanted human cell lines by murine retroviruses: a lesson brought back to light by XMRV. Front Oncol 2013; 3:156.
|
[66] |
Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS , et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 1994; 91:11733-7.
doi: 10.1073/pnas.91.24.11733
|
[67] |
Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG . GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem 2004; 91:540-52.
doi: 10.1002/(ISSN)1097-4644
|
[68] |
Valdés-Mora F, Stirzaker C . Epigenetic alterations in primary prostate cancer. Precision molecular pathology of prostate cancer. Cham: Springer; 2018. p. 193-211.
|
[69] |
Brooks JD, Weinstein M, Lin X, Sun Y, Pin SS, Bova GS , et al. CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomark Prev 1998; 7:531-6.
|
[70] |
Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG , et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 2003; 163:923-33.
doi: 10.1016/S0002-9440(10)63452-9
|
[71] |
Nelson CP, Kidd LC, Sauvageot J, Isaacs WB, De Marzo AM, Groopman JD , et al. Protection against 2-hydroxyamino-1- methyl-6-phenylimidazo[4,5-b]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione Stransferase P1. Cancer Res 2001; 61:103-9.
|
[72] |
Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, Wolf CR . Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA 1998; 95:5275-80.
doi: 10.1073/pnas.95.9.5275
|
[73] |
Ritchie KJ, Henderson CJ, Wang XJ, Vassieva O, Carrie D, Farmer PB , et al. Glutathione transferase pi plays a critical role in the development of lung carcinogenesis following exposure to tobacco-related carcinogens and urethane. Cancer Res 2007; 67:9248-57.
doi: 10.1158/0008-5472.CAN-07-1764
|
[74] |
Iwata T, Schultz D, Vaughn M, Yegnasubramanian S, Nelson WG, De Marzo AM . Glutathione S-transferase pi (gstp1) deficiency accelerates prostate carcinogenesis in the lo-myc mouse. J Urol 2009; 181:183-4.
|
[75] |
Funk CD . Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294:1871-5.
doi: 10.1126/science.294.5548.1871
|
[76] |
Gilroy DW, Colville-Nash PR . New insights into the role of COX 2 in inflammation. J Mol Med 2000; 78:121-9.
doi: 10.1007/s001090000094
|
[77] |
Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H . Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000; 42:73-8.
doi: 10.1002/(ISSN)1097-0045
|
[78] |
Tanji N, Kikugawa T, Yokoyama M . Immunohistochemical study of cyclooxygenases in prostatic adenocarcinoma; relationship to apoptosis and Bcl-2 protein expression. Anticancer Res 2000; 20:2313-9.
|
[79] |
Madaan S, Abel PD, Chaudhary KS, Hewitt R, Stott MA, Stamp GW , et al. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int 2000; 86:736-41.
|
[80] |
Kirschenbaum A, Klausner AP, Lee R, Unger P, Yao S, Liu XH , et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 2000; 56:671-6.
doi: 10.1016/S0090-4295(00)00674-9
|
[81] |
Kirschenbaum A, Liotta DR, Yao S, Liu X-H, Klausner AP, Unger P , et al. Immunohistochemical localization of cyclooxygenase-1 and cyclooxygenase-2 in the human fetal and adult male reproductive tracts 1. J Clin Endocrinol Metab 2000; 85:3436-41.
|
[82] |
Zha S, Gage WR, Sauvageot J, Saria EA, Putzi MJ, Ewing CM , et al. Cyclooxygenase-2 is up-regulated in proliferative in- flammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001; 61:8617-23.
|
[83] |
Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM . Cyclooxygenases in cancer: progress and perspective. Cancer Lett 2004; 215:1-20.
doi: 10.1016/j.canlet.2004.06.014
|
[84] |
Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC , et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 2004; 64:1975-86.
doi: 10.1158/0008-5472.CAN-03-3972
|
[85] |
Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM , et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323:643-6.
doi: 10.1038/323643a0
|
[86] |
Tan HL, Sood A, Rahimi HA, Wang W, Gupta N, Hicks J , et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res 2014; 20:890-903.
doi: 10.1158/1078-0432.CCR-13-1982
|
[87] |
Battifora H . p53 immunohistochemistry: a word of caution. Hum Pathol 1994; 25:435-7.
doi: 10.1016/0046-8177(94)90113-9
|
[88] |
Stackhouse GB, Sesterhenn IA, Bauer JJ, Mostofi FK, Connelly RR, Srivastava SK , et al. p53 and bcl-2 immunohistochemistry in pretreatment prostate needle biopsies to predict recurrence of prostate cancer after radical prostatectomy. J Urol 1999; 162:2040-5.
doi: 10.1016/S0022-5347(05)68095-0
|
[89] |
Guedes LB, Almutairi F, Haffner MC, Rajoria G, Liu Z, Klimek S , et al. Analytic, preanalytic, and clinical validation of p53 IHC for detection of TP53 missense mutation in prostate cancer. Clin Cancer Res 2017; 23:4693-703.
doi: 10.1158/1078-0432.CCR-17-0257
|
[90] |
Maughan BL, Guedes LB, Boucher K, Rajoria G, Liu Z, Klimek S , et al. p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2018. https://doi.org/10.1038/s41391-017-0027-4.
|
[91] |
Martin AM, Nirschl TR, Nirschl CJ, Francica BJ, Kochel CM, van Bokhoven A , et al. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate Cancer Prostatic Dis 2015; 18:325-32.
doi: 10.1038/pcan.2015.39
|
[92] |
Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T , et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin Cancer Res 2016; 22:1969-77.
doi: 10.1158/1078-0432.CCR-15-2042
|
[93] |
Haffner MC, Guner G, Taheri D, Netto GJ, Palsgrove DN, Zheng Q , et al. Comprehensive evaluation of programmed death-ligand 1 expression in primary and metastatic prostate cancer. Am J Pathol 2018; 188:1478-85.
doi: 10.1016/j.ajpath.2018.02.014
|
[94] |
Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH , et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 2002; 62:3347-50.
|
[95] |
S?derberg-Nauclér C, Rahbar A, Stragliotto G . Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med 2013; 369:985-6.
doi: 10.1056/NEJMc1302145
|
[96] |
Huse JT, Aldape K . CMV and gliomaeare we there yet? Neuro Oncol 2014; 16:1433-4.
doi: 10.1093/neuonc/nou296
|
[97] |
Hochhalter CB, Carr C, O’Neill BE, Ware ML, Strong MJ . The association between human cytomegalovirus and glioblastomas: a review. 2017.
|
[98] |
Alter HJ, Mikovits JA, Switzer WM, Ruscetti FW, Lo SC, Klimas N , et al. A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus. MBio 2012; 3. e00266e12.
|
[99] |
Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett Jr J , et al. No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRVinfected. Science 2011; 333:94-7.
doi: 10.1126/science.1204963
|
[100] |
Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE , et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci USA 2010; 107:2598-603.
doi: 10.1073/pnas.0914018107
|
[101] |
Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL , et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 2013; 73:4372-82.
doi: 10.1158/0008-5472.CAN-12-3342
|
[102] |
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S , et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483:603-7.
doi: 10.1038/nature11003
|
[103] |
De Marzo AM, Fedor HH, Gage WR, Rubin MA . Inadequate formalin fixation decreases reliability of p27 immunohistochemical staining: probing optimal fixation time using high-density tissue microarrays. Hum Pathol 2002; 33:756-60.
doi: 10.1053/hupa.2002.126187
|
[104] |
Knockout (KO) . Validated antibodies: specificity confirmed. Abcam; 2018. https://www.abcam.com/primary-antibodies /knockout-validation. [Accessed 16 July 2018].
|
[105] |
Hammond M . DNA-mediated detection and profiling of protein complexes. Acta Univ Upsal 2013. https://core.ac.uk/ display/38961803.
|
[106] |
Welti J, Rodrigues DN, Sharp A, Sun S, Lorente D, Riisnaes R , et al. Analytical validation and clinical qualification of a new immunohistochemical assay for androgen receptor splice variant-7 protein expression in metastatic castrationresistant prostate cancer. Eur Urol 2016; 70:599-608.
doi: 10.1016/j.eururo.2016.03.049
|
[107] |
Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A , et al. RNAscope: a novel in situ RNA analysis platform for formalin- fixed, paraffin-embedded tissues. J Mol Diagn 2012; 14:22-9.
doi: 10.1016/j.jmoldx.2011.08.002
|
[108] |
Battich N, Stoeger T, Pelkmans L . Image-based transcriptomics in thousands of single human cells at singlemolecule resolution. Nat Methods 2013; 10:1127-33.
|
[109] |
Guedes LB, Morais CL, Almutairi F, Haffner MC, Zheng Q, Isaacs JT , et al. Analytic validation of RNA in situ hybridization (RISH) for AR and AR-V7 expression in human prostate cancer. Clin Cancer Res 2016; 22:4651-63.
doi: 10.1158/1078-0432.CCR-16-0205
|
[110] |
Baena-Del Valle JA, Zheng Q, Hicks JL, Fedor H, Trock BJ, Morrissey C , et al. Rapid loss of RNA detection by in situ hybridization in stored tissue blocks and preservation by cold storage of unstained slides. AmJ Clin Pathol 2017; 148:398-415.
doi: 10.1093/ajcp/aqx094
|
[111] |
Guner G, Sirajuddin P, Zheng Q, Bai B, Brodie A, Liu H , et al. Novel assay to detect RNA polymerase I activity in vivo. Mol Cancer Res 2017; 15:577-84.
doi: 10.1158/1541-7786.MCR-16-0246
|
[112] |
Baena-Del Valle JA, Zheng Q, Esopi DM, Rubenstein M, Hubbard GK, Moncaliano MC , et al. MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 2018; 244:11-24.
doi: 10.1002/path.4980
|
[113] |
S?derberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J , et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3:995-1000.
|
[114] |
S?derberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson L-G , et al. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 2008; 45:227-32.
doi: 10.1016/j.ymeth.2008.06.014
|
[115] |
Zieba A, Ponten F, Uhlén M, Landegren U . In situ protein detection with enhanced specificity using DNA-conjugated antibodies and proximity ligation. Mod Pathol 2018; 31:253-63.
doi: 10.1038/modpathol.2017.102
|
[116] |
Spears M, Taylor KJ, Munro AF, Cunningham CA, Mallon EA, Twelves CJ , et al. In situ detection of HER2:HER2 and HER2: HER3 protein-protein interactions demonstrates prognostic significance in early breast cancer. Breast Cancer Res Treat 2012; 132:463-70.
doi: 10.1007/s10549-011-1606-z
|
[117] |
Haffner MC, Esopi DM, Chaux A, Gürel M, Ghosh S, Vaghasia AM , et al. AIM1 is an actin-binding protein that suppresses cell migration and micrometastatic dissemination. Nat Commun 2017; 8:142.
doi: 10.1038/s41467-017-00084-8
|
[118] |
Jarvius M, Paulsson J, Weibrecht I, Leuchowius KJ, Andersson AC, Wählby C , et al. In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method. Mol Cell Proteom 2007; 6:1500-9.
doi: 10.1074/mcp.M700166-MCP200
|
[119] |
Weibrecht I, Gavrilovic M, Lindbom L, Landegren U, Wählby C, S?derberg O . Visualising individual sequencespecific protein-DNA interactions in situ. N Biotechnol 2012; 29:589-98.
doi: 10.1016/j.nbt.2011.08.002
|
[120] |
Weibrecht I, Lundin E, Kiflemariam S, Mignardi M, Grundberg I, Larsson C , et al. In situ detection of individual mRNA molecules and protein complexes or posttranslational modifications using padlock probes combined with the in situ proximity ligation assay. Nat Protoc 2013; 8:355-72.
|
[1] |
Zepeng Jia,Yifan Chang,Yan Wang,Jing Li,Min Qu,Feng Zhu,Huan Chen,Bijun Lian,Meimian Hua,Yinghao Sun,Xu Gao. Sustainable functional urethral reconstruction: Maximizing early continence recovery in robotic-assisted radical prostatectomy[J]. Asian Journal of Urology, 2021, 8(1): 126-133. |
[2] |
Simeng Wen,Yuanjie Niu,Haojie Huang. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 203-218. |
[3] |
Ieva Eringyte,Joanna N. Zamarbide Losada,Sue M. Powell,Charlotte L. Bevan,Claire E. Fletcher. Coordinated AR and microRNA regulation in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 233-250. |
[4] |
Yezi Zhu,Jun Luo. Regulation of androgen receptor variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 251-257. |
[5] |
Ramesh Narayanan. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer[J]. Asian Journal of Urology, 2020, 7(3): 271-283. |
[6] |
Yinghao Sun,Liping Xie,Tao Xu,Jørn S. Jakobsen,Weiqing Han,Per S. Sørensen,Xiaofeng Wang. Efficacy and safety of degarelix in patients with prostate cancer: Results from a phase III study in China[J]. Asian Journal of Urology, 2020, 7(3): 301-308. |
[7] |
Anne Holck Storås,Martin G. Sanda,Olatz Garin,Peter Chang,Dattatraya Patil,Catrina Crociani,Jose Francisco Suarez,Milada Cvancarova,Jon Håvard Loge,Sophie D. Fosså. A prospective study of patient reported urinary incontinence among American, Norwegian and Spanish men 1 year after prostatectomy[J]. Asian Journal of Urology, 2020, 7(2): 161-169. |
[8] |
Huan Chen,Bijun Lian,Zhenyang Dong,Yan Wang,Min Qu,Feng Zhu,Yinghao Sun,Xu Gao. Experience of one single surgeon with the first 500 robot-assisted laparoscopic prostatectomy cases in mainland China[J]. Asian Journal of Urology, 2020, 7(2): 170-176. |
[9] |
Kerri Beckmann,Michael O’Callaghan,Andrew Vincent,Penelope Cohen,Martin Borg,David Roder,Sue Evans,Jeremy Millar,Kim Moretti. Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings[J]. Asian Journal of Urology, 2019, 6(4): 321-329. |
[10] |
Brian T. Hanyok,Mary M. Everist,Lauren E. Howard,Amanda M. De Hoedt,William J. Aronson,Matthew R. Cooperberg,Christopher J. Kane,Christopher L. Amling,Martha K. Terris,Stephen J. Freedland. Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH[J]. Asian Journal of Urology, 2019, 6(3): 242-248. |
[11] |
Yifan Chang,Xiaojun Lu,Qingliang Zhu,Chuanliang Xu,Yinghao Sun,Shancheng Ren. Single-port transperitoneal robotic-assisted laparoscopic radical prostatectomy (spRALP): Initial experience[J]. Asian Journal of Urology, 2019, 6(3): 294-297. |
[12] |
Jean-Luc Descotes. Diagnosis of prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 129-136. |
[13] |
Hendrik van Poppel,Wouter Everaerts,Lorenzo Tosco,Steven Joniau. Open and robotic radical prostatectomy[J]. Asian Journal of Urology, 2019, 6(2): 125-128. |
[14] |
Olivier Rouviere,Paul Cezar Moldovan. The current role of prostate multiparametric magnetic resonance imaging[J]. Asian Journal of Urology, 2019, 6(2): 137-145. |
[15] |
Laurence Klotz. Contemporary approach to active surveillance for favorable risk prostate cancer[J]. Asian Journal of Urology, 2019, 6(2): 146-152. |
|
|
|
|