|
|
Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China |
Zou Qingsong,Fu Qiang()
|
Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China |
|
|
Abstract Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
|
Received: 20 September 2016
Published: 09 June 2018
|
|
|
|
Cell sources in urinary tract reconstruction. ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; BMSCs, bone marrow stem cells; ADSCs, adipose tissue-derived stem cells; hUMSCs, human umbilical cord-derived mesenchymal stem cells; USCs, urine-derived stem cells.
|
|
Biomaterials in urinary tract reconstruction. PLA, polylactic acid; PGA, polyglycolic acid; PLGA, polylacticcoglycolic acid; SIS, small intestinal submucosa; BAM, bladder acellular matrices; ACSM, acellular corpus spongiosum matrices.
|
Research | Animals for modeling | Cell types | Biomaterial/artificial tissue | Kidney damage | Duration of observation | Chen et al., 2011 [60] | Rats | ADSCs | - | Acute renal failure | 72 h | Cao et al., 2010 [61] | Rats | hUMSCs | - | Acute renal failure | 72 h | Yuan et al., 2011 [63] | Mice | VEGF-modified ESCs | - | Acute renal failure | 72 h | Chen et al., 2011 [64] | Rats | FGF-modified hUMSCs | - | Acute renal failure | 72 h | Zhou et al., 2013 [65] | Rats | Exosomes released by hUMSCs | - | Acute renal failure | 120 h | Yu et al., 2014 [67] | Rats | - | KAM | Partially nephrectomized kidneys | 6 weeks | Guan et al., 2015 [66] | Rats | ESCs | KAM | Nephrectomized kidneys | 2 weeks |
|
|
Research | Animals for modeling | Cell types | Biomaterial/artificial tissue | Repaired length | Duration of observation | Fu et al., 2012 [71] | Mice | Ureteral epithelial cells | PLLA-collagen nanofibrous | - | 2 weeks | Xu et al., 2012 [73] | Rats | Bladder epithelial cells | PLLA | 0.9 cm | 3 weeks | Liao et al., 2013 [9] | Rabbits | BMSCs + SMCs | BAM | 4 cm | 16 weeks | Zhao et al., 2012 [10] | Rabbits | Mesothelial cells | BAM | 3 cm | 16 weeks | Shi et al., 2012 [37] | Mice | ADSCs induced epithelial cells | PLA/collagen scaffolds | - | 2 weeks | Meng et al., 2015 [74] | Rabbits | ADSCs + SMCs | BAM | 4 cm | 16 weeks |
|
|
Research | Animals for modeling | Cell types | Biomaterial/artificial tissue | Repaired surface defect | Duration of observation | Zhu et al., 2011 [75] | Rabbits | - | BAM | - | 24 weeks | Wang and Liao, 2014 [76] | Rabbits | - | SIS | 10 cm × 3 cm × 3 mm | 24 weeks | Zhao et al., 2015 [77] | Rats | - | BAM-silk fibroin (SF) | 10 mm × 10 mm | 12 weeks | Jiang et al., 2015 [78] | Rabbits | - | VEGF-loaded nanoparticles-modified BAM | 2 cm × 3 cm | 12 weeks | Xiong et al., 2015 [79] | Swine | - | VEGF-loaded nanoparticles-modified BAM | 35%-50% of the bladder | 12 weeks | Chen et al., 2014 [80] | Rats | - | FGF modified BAM | A diameter of 1 cm | 12 weeks | Chen et al., 2010 [81] | Rats | - | FGF modified collagen scaffolds | Half of bladder upper | 12 weeks | Zhou et al., 2013 [82] | Rats | - | PDGF and VEGF modified BAM | 4 cm × 5 cm | 24 weeks | Jiang et al., 2016 [83] | Rabbits | - | FGF and VEGF modified BAM | 2 cm × 3 cm | 12 weeks | Chen et al., 2011 [85] | Swine | VEGF modified EPCs | BAM | 40% of the bladder | 24 weeks | Zhang et al., 2004 [86] | Mice | SMCs + UCs | SIS | 1 cm × 1 cm | 12 weeks | Zhu et al., 2010 [87] | Rabbits | ADSCs | BAM | 1.5 cm × 1.5 cm | 24 weeks | Zhe et al., 2016 [88] | Rats | ADSCs | BAM | - | 14 weeks | Yuan et al., 2013 [89] | Canine | hUMSCs | BAM | 40% of the bladder | 12 weeks |
|
|
Research | Animals for modeling | Biomaterial/artificial tissue | Repaired length | Duration of observation | Yang et al., 2004 [90] | Rabbits | Urethral extracellular matrix | 1.0-1.5 cm | 24 weeks | Wang et al., 2005 [91] | Rabbits | Human cadaveric bladder submucosa | 0.5-1.0 cm | 24 weeks | Huang et al., 2006 [92] | Rabbits | Porcine SIS | 2 cm | 12 weeks | Huang et al., 2014 [94] | Rabbits | 3D porous BAM | 1.5 cm | 3 months | Wang et al., 2013 [95] | Rabbit | BAM + PLGA conjugated with VEGF | 3 cm | 3 months | Lv et al., 2016 [96] | Rabbits | Oxygenating keratin/silk fibroin scaffold | 1.5 cm × 0.8 cm | 6 months | Jia et al., 2015 [97] | Beagle dog | Collagen-binding VEGF | 5 cm | 6 months |
|
|
Research | Animals for modeling | Cell types | Biomaterial/artificial tissue | Repaired length | Duration of observation | Fu et al., 2008 [99] | Rabbits | Foreskin epidermal cells | Acellular collagen matrix | 1.5 cm | 12 months | Fu et al., 2007 [15] | Rabbits | Foreskin epidermal cells | Acellular collagen matrix | 1.5 cm | 6 months | Xie et al., 2013 [100] | Female beagle dogs | Urothelial cells | Electrospun silk fibroin matrices | 3 cm × 1 cm | 6 months | Gu et al., 2012 [101] | Rabbits | Mesothelial cells | BAM | 1.5 cm | 6 months | Li et al., 2013 [105] | Rabbits | BMSCs + SMCs | BAM | 2.0 cm | 16 weeks | Li et al., 2014 [38] | Rabbits | Epith-rASCs | BAM | 2.0 cm × 0.8 cm | 6 months | Li et al., 2013 [106] | Rabbits | (TGF-β1 siRNA) fibroblasts + Oral keratinocytes | BAM | 2.0 × 0.8 cm | 6 months | Wang et al., 2014 [104] | Rabbits | Urethral epithelium cells | Denuded human amniotic scaffold | 0.5 cm × 1 cm | 3 months | Huang et al., 2015 [108] | Rabbits | Lingual keratinocytes | 3D porous bacterial cellulose | 2.0 cm × 0.8 cm | 3 months | Zhang et al., 2015 [107] | Rabbits | Bladder epithelial cells + fibroblasts | ICG-001 delivering collagen/(PLLA-CL) nanofibrous | 2.0 cm × 0.8 cm | 3 months |
|
|
[1] |
A. Mangera, C. Chapple , Management of anterior urethral stricture: an evidence-based approach,Curr Opin Urol, 20(2010), pp. 453-458.
doi: 10.1097/MOU.0b013e32833ee8d5
pmid: 20827208
|
[2] |
S.F. Badylak, D. Taylor, K. Uygun , Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds,Annu Rev Biomed Eng, 13(2011), pp. 27-53.
doi: 10.1146/annurev-bioeng-071910-124743
pmid: 21417722
|
[3] |
A. Mangera, C.R. Chapple , Tissue engineering in urethral reconstruction - an update,Asian J Androl, 15(2013), pp. 89-92.
doi: 10.1038/aja.2012.91
pmid: 23042444
|
[4] |
N. Lumen, W. Oosterlinck, P. Hoebeke , Urethral reconstruction using buccal mucosa or penile skin grafts: systematic review and meta-analysis,Urol Int, 89(2012), pp. 387-394.
doi: 10.1159/000341138
pmid: 22889835
|
[5] |
A. Atala , Recent applications of regenerative medicine to urologic structures and related tissues,Curr Opin Urol, 16(2006), pp. 305-309.
doi: 10.1049/ip-gtd:20010157
pmid: 16770133
|
[6] |
A. El-Assmy, A.T. Hafez, M.T. El-Sherbiny, M.A. El-Hamid, T. Mohsen, E.M. Nour , et al., Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study, J Urol 171 ( 2004), pp. 1939-1942,
doi: 10.1097/01.ju.0000121437.94629.ef
pmid: 15076316
|
[7] |
E.N. Liatsikos, C.Z. Dinlenc, R. Kapoor, N.O. Bernardo, D. Pikhasov, A.E. Anderson , et al., Ureteral reconstruction: small intestine submucosa for the management of strictures and defects of the upper third of the ureter, J Urol 165 ( 2001), pp. 1719-1723,
doi: 10.1016/S0022-5347(05)66401-4
pmid: 11342963
|
[8] |
F. Chen, J.J. Yoo, A. Atala , Experimental and clinical experience using tissue regeneration for urethral reconstruction,World J Urol, 18(2000), pp. 67-70.
doi: 10.1007/s003450050012
pmid: 10766047
|
[9] |
W. Liao, S. Yang, C. Song, X. Li, Y. Li, Y. Xiong , Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix,Transplant Proc, 45(2013), pp. 730-734.
doi: 10.1016/j.transproceed.2012.08.023
pmid: 23498814
|
[10] |
Z. Zhao, H. Yu, F. Xiao, X. Wang, S. Yang, S. Li , Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering,J Surg Res, 178(2012), pp. 55-62.
doi: 10.1016/j.jss.2012.01.047
pmid: 22482758
|
[11] |
G. Romagnoli, M. De Luca, F. Faranda, R. Bandelloni, A.T. Franzi, F. Cataliotti , et al., Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium,N Engl J Med, 323(1990), pp. 527-530.
doi: 10.1056/NEJM199008233230806
pmid: 2377177
|
[12] |
Y. Zhang, E. McNeill, H. Tian, S. Soker, K.E. Andersson, J.J. Yoo , et al., Urine derived cells are a potential source for urological tissue reconstruction,J Urol, 180(2008), pp. 2226-2233.
doi: 10.1016/j.juro.2008.07.023
pmid: 18804817
|
[13] |
U. Nagele, S. Maurer, G. Feil, C. Bock, J. Krug, K.D. Sievert , et al., In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings,Eur Urol, 54(2008), pp. 1414-1422.
doi: 10.1016/j.eururo.2008.01.091
pmid: 18280639
|
[14] |
M. Fossum, J. Skikuniene, A. Orrego, A. Nordenskjold, Prepubertal follow-up after hypospadias repair with autologous In vitro cultured urothelial cells Acta Paediatr(Oslo, Norway:1992), 101(2012), pp. 755-760.
doi: 10.1111/j.1651-2227.2012.02659.x
pmid: 22471328
|
[15] |
Q. Fu, C.L. Deng, W. Liu, Y.L. Cao , Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix,BJU Int, 99(2007), pp. 1162-1165.
doi: 10.1111/j.1464-410X.2006.06691.x
pmid: 17244284
|
[16] |
S. Bhargava, J.M. Patterson, R.D. Inman, S. MacNeil, C.R. Chapple , Tissue-engineered buccal mucosa urethroplasty - clinical outcomes,Eur Urol, 53(2008), pp. 1263-1269.
doi: 10.1016/j.eururo.2008.01.061
pmid: 18262717
|
[17] |
J.G. Rheinwald, H. Green , Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells,Cell, 6(1975), pp. 331-343.
doi: 10.1016/S0092-8674(75)80001-8
|
[18] |
H. Orabi, T. AbouShwareb, Y. Zhang, J.J. Yoo, A. Atala , Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study,Eur Urol, 63(2013), pp. 531-538.
doi: 10.1016/j.eururo.2012.07.041
pmid: 3554849
|
[19] |
C. Zhu, D. Ying, D. Zhou, J. Mi, W. Zhang, Q. Chang , et al., Expression of TGF-beta1 in smooth muscle cells regulates endothelial progenitor cells migration and differentiation,J Surg Res, 125(2005), pp. 151-156.
doi: 10.1016/j.jss.2004.12.006
pmid: 15854667
|
[20] |
M. Xie, Y. Xu, L. Song, J. Wang, X. Lv, Y. Zhang , Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model,J Surg Res, 188(2014), pp. 1-7.
doi: 10.1016/j.jss.2013.11.1102
pmid: 24411303
|
[21] |
A.O. Phillips, R. Steadman , Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury,Histol Histopathol, 17(2002), pp. 247-252.
doi: 10.14670/HH-17.247
pmid: 11813875
|
[22] |
B.S. Cummings, J.M. Lasker, L.H. Lash , Expression of glutathione-dependent enzymes and cytochrome P450s in freshly isolated and primary cultures of proximal tubular cells from human kidney,J Pharmacol Exp Ther, 293(2000), pp. 677-685.
pmid: 10773044
|
[23] |
H.M. Blau, T.R. Brazelton, J.M. Weimann , The evolving concept of a stem cell: entity or function?,Cell, 105(2001), pp. 829-841.
doi: 10.1016/S0092-8674(01)00409-3
|
[24] |
E. Fuchs, J.A. Segre , Stem cells: a new lease on life,Cell, 100(2000), pp. 143-155.
doi: 10.1016/S0092-8674(00)81691-8
|
[25] |
J.R. Mauney, A. Ramachandran, R.N. Yu, G.Q. Daley, R.M. Adam, C.R. Estrada , All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms, PLoS One 5 ( 2010), p. e11513,
doi: 10.1371/journal.pone.0011513
pmid: 2903484
|
[26] |
S.L. Osborn, R. Thangappan, A. Luria, J.H. Lee, J. Nolta, E.A. Kurzrock , Induction of human embryonic and induced pluripotent stem cells into urothelium,Stem Cells Transl Med, 3(2014), pp. 610-619.
doi: 10.5966/sctm.2013-0131
pmid: 24657961
|
[27] |
M.L. Hart, K.M. Neumayer, M. Vaegler, L. Daum, B. Amend, K.D. Sievert , et al., Cell-based therapy for the deficient urinary sphincter,Curr Urol Rep, 14(2013), pp. 476-487.
doi: 10.1007/s11934-013-0352-7
pmid: 23824516
|
[28] |
D. Ilic, J.M. Polak , Stem cells in regenerative medicine: introduction,Br Med Bull, 98(2011), pp. 117-126.
doi: 10.1093/bmb/ldr012
pmid: 21565803
|
[29] |
K. Shin, J. Lee, N. Guo, J. Kim, A. Lim, L. Qu , et al., Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder, Nature, 472 ( 2011), pp. 110-114,
doi: 10.1038/nature09851
pmid: 21389986
|
[30] |
J.C. Pignon, C. Grisanzio, Y. Geng, J. Song, R.A. Shivdasani , S. Signoretti,p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia,Proc Natl Acad Sci U S A, 110(2013), pp. 8105-8110.
doi: 10.1073/pnas.1221216110
pmid: 23620512
|
[31] |
H.M. Larsson, F. Gorostidi, J.A. Hubbell, Y. Barrandon, P. Frey, , Clonal, self-renewing and differentiating human and porcine urothelial cells, a novel stem cell population, PLoS One 9 ( 2014), p. e90006,
doi: 10.1371/journal.pone.0090006
pmid: 3935977
|
[32] |
H. Tian, S. Bharadwaj, Y. Liu, P.X. Ma, A. Atala, Y. Zhang , Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering,Tissue Eng Part A, 16(2010), pp. 1769-1779.
doi: 10.1089/ten.TEA.2009.0625
pmid: 2952115
|
[33] |
A.K. Sharma, P.V. Hota, D.J. Matoka, N.J. Fuller, D. Jandali, H. Thaker , et al., Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly (1,8-octanediol-co-citrate) based thin films,Biomaterials, 31(2010), pp. 6207-6217.
doi: 10.1016/j.biomaterials.2010.04.054
pmid: 20488535
|
[34] |
H. Orabi, G. Lin, L. Ferretti, C.S. Lin, T.F. Lue, , Scaffoldless tissue engineering of stem cell derived cavernous tissue for treatment of erectile function, J Sex Med 9 ( 2012), pp. 1522-1534,
doi: 10.1111/j.1743-6109.2012.02727.x
pmid: 22513032
|
[35] |
M. Brzoska, H. Geiger, S. Gauer, P. Baer , Epithelial differentiation of human adipose tissue-derived adult stem cells,Biochem Biophys Res Commun, 330(2005), pp. 142-150.
doi: 10.1016/j.bbrc.2005.02.141
pmid: 15781243
|
[36] |
J. Liu, J. Huang, T. Lin, C. Zhang, X. Yin , Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro,Biochem Biophys Res Commun, 390(2009), pp. 931-936.
doi: 10.1016/j.bbrc.2009.10.080
pmid: 19852942
|
[37] |
J.G. Shi, W.J. Fu, X.X. Wang, Y.D. Xu, G. Li, B.F. Hong , et al., Tissue engineering of ureteral grafts by seeding urothelial differentiated hADSCs onto biodegradable ureteral scaffolds,J Biomed Mater Res Part A, 100(2012), pp. 2612-2622.
doi: 10.1002/jbm.a.34182
pmid: 22615210
|
[38] |
H. Li, Y. Xu, H. Xie, C. Li, L. Song, C. Feng , et al., Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model,Tissue Eng Part A, 20(2014), pp. 774-784.
doi: 10.1016/j.juro.2013.02.1635
pmid: 3926141
|
[39] |
S. Barachini, L. Trombi, S. Danti , D. D'Alessandro, B. Battolla, A. Legitimo, et al.,Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine,Stem Cells Dev, 18(2009), pp. 293-305.
doi: 10.1089/scd.2008.0017
pmid: 18444788
|
[40] |
M. Secco, E. Zucconi, N.M. Vieira, L.L. Fogaca, A. Cerqueira, M.D. Carvalho , et al., Multipotent stem cells from umbilical cord: cord is richer than blood!,Stem Cells (Dayton, Ohio), 26(2008), pp. 146-150.
doi: 10.1634/stemcells.2007-0381
pmid: 17932423
|
[41] |
Y. Xu, D.C. Sun, Z.T. Wei, B.F. Hong, Y. Yang , Experimental study on transplantation of autologous minced muscle with human umbilical cord mesenchymal stem cells for urethral reconstruction,Eur Rev Med Pharmacol Sci, 18(2014), pp. 3412-3419.
pmid: 25491616
|
[42] |
S. Bharadwaj, G. Liu, Y. Shi, R. Wu, B. Yang, T. He , et al., Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology,Stem Cells (Dayton, Ohio), 31(2013), pp. 1840-1856.
doi: 10.1002/stem.1424
pmid: 23666768
|
[43] |
A. Bodin, S. Bharadwaj, S. Wu, P. Gatenholm, A. Atala, Y. Zhang , Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion,Biomaterials, 31(2010), pp. 8889-8901.
doi: 10.1016/j.biomaterials.2010.07.108
pmid: 20800278
|
[44] |
D. Zhang, G. Wei, P. Li, X. Zhou, Y. Zhang , Urine-derived stem cells: a novel and versatile progenitor source for cell-based therapy and regenerative medicine,Genes Dis, 1(2014), pp. 8-17.
doi: 10.1016/j.gendis.2014.07.001
pmid: 25411659
|
[45] |
M.E. Davis, P.C. Hsieh, A.J. Grodzinsky, R.T. Lee , Custom design of the cardiac microenvironment with biomaterials,Circ Res, 97(2005), pp. 8-15.
doi: 10.1161/01.RES.0000173376.39447.01
|
[46] |
D.W. Hutmacher, S. Cool , Concepts of scaffold-based tissue engineering - the rationale to use solid free-form fabrication techniques,J Cell Mol Med, 11(2007), pp. 654-669.
doi: 10.1111/j.1582-4934.2007.00078.x
pmid: 17760831
|
[47] |
Z.S. Patel, A.G. Mikos , Angiogenesis with biomaterial-based drug- and cell-delivery systems,J Biomater Sci Polym Ed, 15(2004), pp. 701-726.
doi: 10.1163/156856204774196117
pmid: 15255521
|
[48] |
J.A. Burdick, G. Vunjak-Novakovic , Engineered microenvironments for controlled stem cell differentiation,Tissue Eng Part A, 15(2009), pp. 205-219.
doi: 10.1089/ten.tea.2008.0131
pmid: 18694293
|
[49] |
L.A. Ribeiro-Filho, K.D. Sievert,Acellular matrix in urethral reconstruction,Adv Drug Deliv Rev, 82/83(2015), pp. 38-46.
doi: 10.1016/j.addr.2014.11.019
pmid: 25477304
|
[50] |
A. Raya-Rivera, D.R. Esquiliano, J.J. Yoo, E. Lopez-Bayghen, S. Soker, A. Atala , Tissue-engineered autologous urethras for patients who need reconstruction: an observational study,Lancet (London, England), 377(2011), pp. 1175-1182.
doi: 10.1016/S0140-6736(10)62354-9
pmid: 21388673
|
[51] |
A. Atala , Engineering organs,Curr Opin Biotechnol, 20(2009), pp. 575-592.
doi: 10.1016/j.copbio.2009.10.003
|
[52] |
J.E. Nuininga, M.J. Koens, D.M. Tiemessen, E. Oosterwijk, W.F. Daamen, P.J. Geutjes , et al., Urethral reconstruction of critical defects in rabbits using molecularly defined tubular type I collagen biomatrices: key issues in growth factor addition,Tissue Eng Part A, 16(2010), pp. 3319-3328.
doi: 10.1089/ten.tea.2010.0053
pmid: 20662739
|
[53] |
S.J. Bullers, S.C. Baker, E. Ingham, J. Southgate , The human tissue-biomaterial interface: a role for PPARgamma-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype,Tissue Eng Part A, 20(2014), pp. 2390-2401.
doi: 10.1089/ten.TEA.2013.0628
pmid: 4161139
|
[54] |
J.R. Mauney, T. Nguyen, K. Gillen, C. Kirker-Head, J.M. Gimble, D.L. Kaplan , Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds,Biomaterials, 28(2007), pp. 5280-5290.
doi: 10.1016/j.biomaterials.2007.08.017
pmid: 17765303
|
[55] |
S. Korossis, F. Bolland, J. Southgate, E. Ingham, J. Fisher , Regional biomechanical and histological characterisation of the passive porcine urinary bladder: implications for augmentation and tissue engineering strategies,Biomaterials, 30(2009), pp. 266-275.
doi: 10.1016/j.biomaterials.2008.09.034
pmid: 18926570
|
[56] |
A.L. Brown, W. Farhat, P.A. Merguerian, G.J. Wilson, A.E. Khoury, K.A. Woodhouse , 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model,Biomaterials, 23(2002), pp. 2179-2190.
doi: 10.1016/S0142-9612(01)00350-7
pmid: 11962659
|
[57] |
K. Takahashi, S. Yamanaka , Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,Cell, 126(2006), pp. 663-676.
doi: 10.1016/j.cell.2006.07.024
|
[58] |
K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda , et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors,Cell, 131(2007), pp. 861-872.
doi: 10.1016/j.cell.2007.11.019
|
[59] |
M. Takasato, P.X. Er, M. Becroft, J.M. Vanslambrouck, E.G. Stanley, A.G. Elefanty , et al., Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney,Nat Cell Biol, 16(2014), pp. 118-126.
doi: 10.1038/ncb2894
pmid: 24335651
|
[60] |
Y.T. Chen, C.K. Sun, Y.C. Lin, L.T. Chang, Y.L. Chen, T.H. Tsai , et al., Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction,J Transl Med, 9(2011), p. 51.
doi: 10.1186/1479-5876-9-51
pmid: 21545725
|
[61] |
H. Cao, H. Qian, W. Xu, W. Zhu, X. Zhang, Y. Chen , et al., Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats,Biotechnol Lett, 32(2010), pp. 725-732.
doi: 10.1007/s10529-010-0207-y
pmid: 20131083
|
[62] |
F. Togel, K. Weiss, Y. Yang, Z. Hu, P. Zhang, C. Westenfelder , Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury,Am J Physiol Renal Physiol, 292(2007), pp. F1626-F1635.
doi: 10.1152/ajprenal.00339.2006
|
[63] |
L. Yuan, M.J. Wu, H.Y. Sun, J. Xiong, Y. Zhang, C.Y. Liu , et al., VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury,Am J Physiol Renal Physiol, 300(2011), pp. F207-F218.
doi: 10.1152/ajprenal.00073.2010
pmid: 20943766
|
[64] |
Y. Chen, H. Qian, W. Zhu, X. Zhang, Y. Yan, S. Ye , et al., Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury,Stem Cells Dev, 20(2011), pp. 103-113.
doi: 10.1089/scd.2009.0495
pmid: 20446811
|
[65] |
Y. Zhou, H. Xu, W. Xu, B. Wang, H. Wu, Y. Tao , et al., Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro,Stem Cell Res Ther, 4(2013), p. 34.
doi: 10.1186/scrt194
pmid: 3707035
|
[66] |
Y. Guan, S. Liu, Y. Liu, C. Sun, G. Cheng, Y. Luan , et al., Porcine kidneys as a source of ECM scaffold for kidney regeneration,Mater Sci Eng C, Mater Biol Appl, 56(2015), pp. 451-456.
doi: 10.1016/j.msec.2015.07.007
pmid: 26249614
|
[67] |
Y.L. Yu, Y.K. Shao, Y.Q. Ding, K.Z. Lin, B. Chen, H.Z. Zhang , et al., Decellularized kidney scaffold-mediated renal regeneration,Biomaterials, 35(2014), pp. 6822-6828.
doi: 10.1016/j.biomaterials.2014.04.074
pmid: 24855960
|
[68] |
Y. Guan, S. Liu, C. Sun, G. Cheng, F. Kong, Y. Luan , et al., The effective bioengineering method of implantation decellularized renal extracellular matrix scaffolds,Oncotarget, 6(2015), pp. 36126-36138.
doi: 10.18632/oncotarget.5304
pmid: 4742166
|
[69] |
Y. Osman, A. Shokeir, M. Gabr, N. El-Tabey, T. Mohsen, M. El-Baz, , Canine ureteral replacement with long acellular matrix tube: is it clinically applicable?, J Urol 172 ( 2004), pp. 1151-1154,
doi: 10.1097/01.ju.0000134886.44065.00
pmid: 15311060
|
[70] |
S. Baltaci, G. Ozer, E. Ozer, T. Soygur, O. Besalti, K. Anafarta , Failure of ureteral replacement with Gore-Tex tube grafts,Urology, 51(1998), pp. 400-403.
doi: 10.1016/S0090-4295(97)00632-8
pmid: 9510342
|
[71] |
W.J. Fu, Y.D. Xu, Z.X. Wang, G. Li, J.G. Shi, F.Z. Cui , et al., New ureteral scaffold constructed with composite poly (l-lactic acid)-collagen and urothelial cells by new centrifugal seeding system,J Biomed Mater Res Part A, 100(2012), pp. 1725-1733.
doi: 10.1002/jbm.a.34134
pmid: 22447771
|
[72] |
Y. Xu, W. Fu, Z. Wang, G. Li, X. Zhang, , A tissue-specific scaffold for tissue engineering-based ureteral reconstruction, PLoS One 10 ( 2015), p. e0120244,
doi: 10.1371/journal.pone.0120244
pmid: 25775033
|
[73] |
Y. Xu, W. Fu, G. Li, J. Shi, H. Tan, K. Hu , et al., Autologous urothelial cells transplantation onto a prefabricated capsular stent for tissue engineered ureteral reconstruction,J Mater Sci Mater Med, 23(2012), pp. 1119-1128.
doi: 10.1007/s10856-012-4583-9
pmid: 22382733
|
[74] |
L.C. Meng, W.B. Liao, S.X. Yang, Y.H. Xiong, C. Song, L.Q. Liu , Seeding homologous adipose-derived stem cells and bladder smooth muscle cells into bladder submucosa matrix for reconstructing the ureter in a rabbit model,Transplant Proc, 47(2015), pp. 3002-3011.
doi: 10.1016/j.transproceed.2015.10.035
pmid: 26707328
|
[75] |
W.D. Zhu, Y.M. Xu, C. Feng, Q. Fu, L.J. Song , Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model,Der Urol Ausg A, 50(2011), pp. 1420-1425.
doi: 10.1007/s00120-011-2627-2
pmid: 21720832
|
[76] |
Y. Wang, L. Liao, , Histologic and functional outcomes of small intestine submucosa-regenerated bladder tissue, BMC Urol 14 ( 2014), p. 69,
doi: 10.1186/1471-2490-14-69
pmid: 25148849
|
[77] |
Y. Zhao, Y. He, J.H. Guo, J.S. Wu, Z. Zhou, M. Zhang , et al., Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model,Acta Biomater, 23(2015), pp. 91-102.
doi: 10.1016/j.actbio.2015.05.032
pmid: 26049152
|
[78] |
X. Jiang, Q. Xiong, G. Xu, H. Lin, X. Fang, D. Cui , et al., VEGF-loaded nanoparticle-modified BAMAs enhance angiogenesis and inhibit graft shrinkage in tissue-engineered bladder,Ann Biomed Eng, 43(2015), pp. 2577-2586.
doi: 10.1007/s10439-015-1284-9
pmid: 25711152
|
[79] |
Q. Xiong, H. Lin, X. Hua, L. Liu, P. Sun, Z. Zhao , et al., A nanomedicine approach to effectively inhibit contracture during bladder acellular matrix allograft-induced bladder regeneration by sustained delivery of vascular endothelial growth factor,Tissue Eng Part A, 21(2015), pp. 45-52.
doi: 10.1089/ten.TEA.2013.0671
pmid: 24947133
|
[80] |
W. Chen, C. Shi, X. Hou, W. Zhang, L. Li , Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration,Tissue Eng Part A, 20(2014), pp. 2234-2242.
doi: 10.1089/ten.TEA.2013.0730
pmid: 24483233
|
[81] |
W. Chen, C. Shi, S. Yi, B. Chen, W. Zhang, Z. Fang , et al., Bladder regeneration by collagen scaffolds with collagen binding human basic fibroblast growth factor,J Urol, 183(2010), pp. 2432-2439.
doi: 10.1016/j.juro.2010.02.042
pmid: 20403614
|
[82] |
L. Zhou, B. Yang, C. Sun, X. Qiu, Z. Sun, Y. Chen , et al., Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model,Tissue Eng Part A, 19(2013), pp. 264-276.
doi: 10.1089/ten.tea.2011.0609
|
[83] |
X. Jiang, H. Lin, D. Jiang, G. Xu, X. Fang, L. He , et al., Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits,Sci Rep, 6(2016), p. 20784.
doi: 10.1038/srep20784
pmid: 26854200
|
[84] |
L. Zhou, J. Xia, X. Qiu, P. Wang, R. Jia, Y. Chen, et al., In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis, PLoS One 10 ( 2015), p. e0117644,
doi: 10.1371/journal.pone.0117644
pmid: 25706311
|
[85] |
B.S. Chen, H. Xie, S.L. Zhang, H.Q. Geng, J.M. Zhou, J. Pan , et al., Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells,Int J Artif Organs, 34(2011), pp. 1137-1146.
doi: 10.5301/ijao.5000069
pmid: 22198599
|
[86] |
Y. Zhang, B.P. Kropp, H.K. Lin, R. Cowan, E.Y. Cheng , Bladder regeneration with cell-seeded small intestinal submucosa,Tissue Eng, 10(2004), pp. 181-187.
doi: 10.1089/107632704322791835
pmid: 15009944
|
[87] |
W.D. Zhu, Y.M. Xu, C. Feng, Q. Fu, L.J. Song, L. Cui , Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition,World J Urol, 28(2010), pp. 493-498.
doi: 10.1007/s00345-010-0508-8
pmid: 20091038
|
[88] |
Z. Zhe, D. Jun, Z. Yang, X. Mingxi, Z. Ke, Z. Ming , et al., Bladder acellular matrix grafts seeded with adipose-derived stem cells and incubated intraperitoneally promote the regeneration of bladder smooth muscle and nerve in a rat model of bladder augmentation,Stem Cells Dev, 25(2016), pp. 405-414.
doi: 10.1089/scd.2015.0246
pmid: 26863067
|
[89] |
H. Yuan, Y. Zhuang, J. Xiong, W. Zhi, L. Liu, Q. Wei , et al., Human umbilical mesenchymal stem cells-seeded bladder acellular matrix grafts for reconstruction of bladder defects in a canine model, PLoS One 8 ( 2013), p. e80959,
doi: 10.1016/S1569-9056(14)60178-0
pmid: 3858375
|
[90] |
S.X. Yang, Y. Yao, Y.F. Hu, C. Song, L.L. Wang, H.M. Jin , Reconstruction of rabbit urethra using urethral extracellular matrix,Chin Med J, 117(2004), pp. 1786-1790.
doi: 10.1007/BF02914571
pmid: 19408728
|
[91] |
Y.Q. Wang, Y.Q. Li, L.Q. Liu, J.J. Xu, R. Huo, Q. Li , et al. [Rabbit urethral defect repair with freeze-dried acellular bladder submucosa] Zhonghua Zhengxing Waike Zazhi, 21(2005), pp. 62-65.
pmid: 15844603
|
92 |
[Article in Chinese] .
|
[92] |
X. Huang, J. Luo, Y. Liao, Y. Qu, Z. Yang . [Study on small intestinal submucosa as repair materials in urethral reconstruction] Zhongguo Xiufu Chongjian Waike Zazhi, 20(2006), pp. 206-209.
|
[93] |
M. Lee, B.M. Wu, J.C. Dunn , Effect of scaffold architecture and pore size on smooth muscle cell growth,J Biomed Mater Res Part A, 87(2008), pp. 1010-1016.
doi: 10.1002/jbm.a.31816
pmid: 18257081
|
[94] |
J.W. Huang, M.K. Xie, Y. Zhang, G.J. Wei, X. Li, H.B. Li , et al., Reconstruction of penile urethra with the 3-dimensional porous bladder acellular matrix in a rabbit model,Urology, 84(2014), pp. 1499-1505.
doi: 10.1016/j.urology.2014.07.044
pmid: 25306480
|
[95] |
J.H. Wang, Y.M. Xu, Q. Fu, L.J. Song, C. Li, Q. Zhang , et al., Continued sustained release of VEGF by PLGA nanospheres modified BAMG stent for the anterior urethral reconstruction of rabbit, Asian Pac J Trop Med, 6 ( 2013), pp. 481-484,
doi: 10.1016/S1995-7645(13)60078-4
pmid: 23711710
|
[96] |
X. Lv, Z. Li, S. Chen, M. Xie, J. Huang, X. Peng , et al., Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering,Biomaterials, 84(2016), pp. 99-110.
doi: 10.1016/j.biomaterials.2016.01.032
pmid: 26826299
|
[97] |
W. Jia, H. Tang, J. Wu, X. Hou, B. Chen, W. Chen , et al., Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model,Biomaterials, 69(2015), pp. 45-55.
doi: 10.1016/j.biomaterials.2015.08.009
pmid: 26280949
|
[98] |
H. Orabi, S. Bouhout, A. Morissette, A. Rousseau, S. Chabaud, S. Bolduc , Tissue engineering of urinary bladder and urethra: advances from bench to patients, Sci World J, 2013 ( 2013), p. 154564.
doi: 10.1155/2013/154564
pmid: 24453796
|
[99] |
Q. Fu, C.L. Deng, X.F. Song, Y.M. Xu , Long-term study of male rabbit urethral mucosa reconstruction using epidermal cell,Asian J Androl, 10(2008), pp. 719-722.
doi: 10.1111/j.1745-7262.2008.00419.x
pmid: 18645674
|
[100] |
M. Xie, L. Song, J. Wang, S. Fan, Y. Zhang, Y. Xu , Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction,J Surg Res, 184(2013), pp. 774-781.
doi: 10.1016/j.jss.2013.04.016
pmid: 23706393
|
[101] |
G.L. Gu, S.J. Xia, J. Zhang, G.H. Liu, L. Yan, Z.H. Xu , et al., Tubularized urethral replacement using tissue-engineered peritoneum-like tissue in a rabbit model,Urol Int, 89(2012), pp. 358-364.
doi: 10.1159/000339745
pmid: 22797559
|
[102] |
J.L. Long, P. Zuk, G.S. Berke, D.K. Chhetri , Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering,Laryngoscope, 120(2010), pp. 125-131.
doi: 10.1002/lary.21589
pmid: 21225723
|
[103] |
N.J. Koizumi, T.J. Inatomi, C.J. Sotozono, N.J. Fullwood, A.J. Quantock, S. Kinoshita , Growth factor mRNA and protein in preserved human amniotic membrane,Curr Eye Res, 20(2000), pp. 173-177.
doi: 10.1076/0271-3683(200003)2031-9FT173
pmid: 10694891
|
[104] |
F. Wang, T. Liu, L. Yang, G. Zhang, H. Liu, X. Yi , et al., Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models,Med Sci Monit Int Med J Exp Clin Res, 20(2014), pp. 2430-2438.
doi: 10.12659/MSM.891042
pmid: 4257484
|
[105] |
C.L. Li, W.B. Liao, S.X. Yang, C. Song, Y.W. Li, Y.H. Xiong , et al., Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix,Transplant Proc, 45(2013), pp. 3402-3407.
doi: 10.1016/j.transproceed.2013.07.055
pmid: 24182824
|
[106] |
C. Li, Y.M. Xu, Z.S. Liu, H.B. Li , Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits, Urology, 81 ( 2013), pp. 1075-1080,
doi: 10.1016/j.urology.2013.01.041
pmid: 23490528
|
[107] |
K. Zhang, X. Guo, W. Zhao, G. Niu, X. Mo, Q. Fu , Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study,Int J Mol Sci, 16(2015), pp. 27659-27676.
doi: 10.3390/ijms161126050
pmid: 4661908
|
[108] |
J.W. Huang, X.G. Lv, Z. Li, L.J. Song, C. Feng, M.K. Xie , et al., Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model,Biomed Mater (Bristol, England), 10(2015), p. 055005.
doi: 10.1088/1748-6041/10/5/055005
pmid: 26358641
|
[109] |
A. Atala, M. Danilevskiy, A. Lyundup, P. Glybochko, D. Butnaru, A. Vinarov , et al., The potential role of tissue-engineered urethral substitution: clinical and preclinical studies,J Tissue Eng Regen Med, 11(2015), pp. 3-19.
doi: 10.1002/term.2112
pmid: 26631921
|
[110] |
E.L. Dvorin, J. Wylie-Sears, S. Kaushal, D.P. Martin, J. Bischoff , Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1,Tissue Eng, 9(2003), pp. 487-493.
doi: 10.1089/107632703322066660
|
[111] |
V. Cattan, G. Bernard, A. Rousseau, S. Bouhout, S. Chabaud, F.A. Auger , et al., Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft,Eur Urol, 60(2011), pp. 1291-1298.
doi: 10.1016/j.eururo.2011.05.051
pmid: 21684066
|
[112] |
B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher , 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels,J Biomed Mater Res Part A, 101(2013), pp. 1255-1264.
doi: 10.1002/jbm.a.34420
pmid: 23015540
|
[113] |
J.A. Phillippi, E. Miller, L. Weiss, J. Huard, A. Waggoner, P. Campbell , Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations,Stem Cells (Dayton, Ohio), 26(2008), pp. 127-134
doi: 10.1634/stemcells.2007-0520
pmid: 17901398
|
[1] |
A.Birder Lori,F.Kullmann Aura,R.Chapple Christopher. The aging bladder insights from animal models[J]. Asian Journal of Urology, 2018, 5(3): 135-140. |
[2] |
Aldamanhori Reem,Inman Richard. The treatment of complex female urethral pathology[J]. Asian Journal of Urology, 2018, 5(3): 160-163. |
[3] |
Cheng Li,Li Sen,Wang Zicheng,Huang Bingwei,Lin Jian. A brief review on anterior urethral strictures[J]. Asian Journal of Urology, 2018, 5(2): 88-93. |
[4] |
Hung Jung Jae,Park Jinsung,Tae Kim Won,WookKim Hong,JoonKim Hyung,Hong Sungwoo,JoYang Hee,Chung Hong. The association of benign prostatic hyperplasia with lower urinary tract stones in adult men: A retrospective multicenter study[J]. Asian Journal of Urology, 2018, 5(2): 118-121. |
[5] |
Aldamanhori Reem,I.Osman Nadir,R.Chapple Christopher. Underactive bladder: Pathophysiology and clinical significance[J]. Asian Journal of Urology, 2018, 5(1): 17-21. |
[6] |
H.Kim Eric,A.Brockman John,L.Andriole Gerald. The use of 5-alpha reductase inhibitors in the treatment of benign prostatic hyperplasia[J]. Asian Journal of Urology, 2018, 5(1): 28-32. |
[7] |
Mangat Reshma,S.S.Ho Henry,L.C.Kuo Tricia. Non-invasive evaluation of lower urinary tract symptoms (LUTS) in men[J]. Asian Journal of Urology, 2018, 5(1): 42-47. |
[8] |
Johan Braeckman, Louis Denis. Management of BPH then 2000 and now 2016-From BPH to BPO[J]. Asian Journal of Urology, 2017, 4(3): 138-147. |
[9] |
Ho-Yin Ngai, Kar-Kei Steffi Yuen, Chi-Man Ng, Cheung-Hing Cheng, Sau-Kwan Peggy Chu. Metabolic syndrome and benign prostatic hyperplasia:An update[J]. Asian Journal of Urology, 2017, 4(3): 164-173. |
[10] |
Kok Kit Ng, Foo Cheong Ng. The use of antimuscarinics, phosphodiesterase type V inhibitors and phytotherapy for lower urinary tract symptoms in men[J]. Asian Journal of Urology, 2017, 4(3): 191-194. |
[11] |
Rikiya Taoka, Yoshiyuki Kakehi. The influence of asymptomatic inflammatory prostatitis on the onset and progression of lower urinary tract symptoms in men with histologic benign prostatic hyperplasia[J]. Asian Journal of Urology, 2017, 4(3): 158-163. |
[12] |
Farhad Fakhrudin Vasanwala, Michael Yuet Chen Wong, Henry Sun Sien Ho, Keong Tatt Foo. Benign prostatic hyperplasia and male lower urinary symptoms:A guide for family physicians[J]. Asian Journal of Urology, 2017, 4(3): 181-184. |
[13] |
Guido Barbagli, Sofia Balò, Francesco Montorsi, Salvatore Sansalone, Massimo Lazzeri. History and evolution of the use of oral mucosa for urethral reconstruction[J]. Asian Journal of Urology, 2017, 4(2): 96-101. |
[14] |
Victor C. Lin, Chung-hsien Chen, Allen W. Chiu, . Laparoscopic nephroureterectomy for upper tract urothelial carcinoma e Update[J]. Asian Journal of Urology, 2016, 3(3): 115-119. |
[15] |
Aso Omer Rashid, Saman Salih Fakhulddin. Risk factors for fever and sepsis after percutaneous nephrolithotomy[J]. Asian Journal of Urology, 2016, 3(2): 82-87. |
|
|
|
|