|
|
Understanding the biology of urothelial cancer metastasis |
Takashi Kobayashi
|
Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan |
|
|
Abstract Management of unresectable urothelial cancer (UC) has been a clinical challenge for decades. While drug resistance is a key issue, precise understanding of biology of UC metastasis is another challenge for the improvement of treatment outcome of UC patients. Introduction of the cell biology concepts including epithelial-mesenchymal transition (EMT) and cancer stemness seems to explain UC metastasis. Molecular genetics based on gene expression profiling, next generation sequencing, and explosion of non-coding RNA world has opened the door to intrinsic molecular subtyping of UC. Next steps include, based on the recently accumulated understanding, the establishment of novel disease models representing UC metastasis in various experimental platforms, particularly in vivo animal systems. Indeed, novel knowledge molecular genetics has not been fully linked to the modeling of UC metastasis. Further understanding of bladder carcinogenesis is needed particularly with regard to cell of origin related to tumor characteristics including driver gene alterations, pathological differentiations, and metastatic ability. Then we will be able to establish better disease models, which will consequently lead us to further understanding of biology and eventually the development of novel therapeutic strategies for UC metastasis.
|
Received: 10 July 2016
Published: 02 November 2016
|
|
|
[1] |
GLOBOCAN 2012:estimated cancer incidence, mortality and prevalence worldwide in 2012. 2016/05/29. http://globocan.iarc.fr/Default.aspx.
|
[2] |
Shinagare AB, Ramaiya NH, Jagannathan JP, Fennessy FM, Taplin ME, Van den Abbeele AD. Metastatic pattern of bladder cancer:correlation with the characteristics of the primary tumor. AJR Am J Roentgenol 2011;196:117-22.
|
[3] |
von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 2005;23:4602-8.
|
[4] |
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507:315-22.
|
[5] |
Choi W, Czerniak B, Ochoa A, Su X, Siefker-Radtke A, Dinney C, et al. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer. Nat Rev Urol 2014;11:400-10.
|
[6] |
Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA 2014;111:3110-5.
|
[7] |
McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 2009;28:335-44.
|
[8] |
Muramaki M, Miyake H, Terakawa T, Kumano M, Sakai I, Fujisawa M. Expression profile of E-cadherin and N-cadherin in non-muscle-invasive bladder cancer as a novel predictor of intravesical recurrence following transurethral resection. Urol Oncol 2012;30:161-6.
|
[9] |
Breyer J, Gierth M, Shalekenov S, Aziz A, Schafer J, Burger M, et al. Epithelial-mesenchymal transformation markers Ecadherin and survivin predict progression of stage pTa urothelial bladder carcinoma. World J Urol 2016;34:709-16.
|
[10] |
Al-Ahmadie HA, Iyer G, Lee BH, Scott SN, Mehra R, Bagrodia A, et al. Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer. Nat Genet 2016;48:356-8.
|
[11] |
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype? Nat Rev Cancer 2007;7:415-28.
|
[12] |
Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. TGF-betainduced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res 2014; 20:1531-41.
|
[13] |
Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst 2012;8:2289-94.
|
[14] |
Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, et al. EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo. Br J Cancer 2014;110:1767-77.
|
[15] |
Geng J, Fan J, Ouyang Q, Zhang X, Zhang X, Yu J, et al. Loss of PPM1A expression enhances invasion and the epithelial-tomesenchymal transition in bladder cancer by activating the TGF-beta/Smad signaling pathway. Oncotarget 2014;5:5700-11.
|
[16] |
Tsui KH, Hsu SY, Chung LC, Lin YH, Feng TH, Lee TY, et al. Growth differentiation factor-15:a p53- and demethylationupregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep 2015;5:12870.
|
[17] |
Canel M, Serrels A, Frame MC, Brunton VG. E-cadherinintegrin crosstalk in cancer invasion and metastasis. J Cell Sci 2013;126:393-401.
|
[18] |
van der Horst G, Bos L, van der Mark M, Cheung H, Heckmann B, Clement-Lacroix P, et al. Targeting of alpha-v integrins reduces malignancy of bladder carcinoma. PLoS One 2014;9:e108464.
|
[19] |
Hannigan GE, McDonald PC, Walsh MP, Dedhar S. Integrinlinked kinase:not so ‘pseudo’ after all. Oncogene 2011;30:4375-85.
|
[20] |
Matsui Y, Assi K, Ogawa O, Raven PA, Dedhar S, Gleave ME, et al. The importance of integrin-linked kinase in the regulation of bladder cancer invasion. Int J Cancer 2012;130:521-31.
|
[21] |
Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 2011;472:110-4.
|
[22] |
Shin K, Lim A, Odegaard JI, Honeycutt JD, Kawano S, Hsieh MH, et al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol 2014;16:469-78.
|
[23] |
Shin K, Lim A, Zhao C, Sahoo D, Pan Y, Spiekerkoetter E, et al. Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 2014;26:521-33.
|
[24] |
Pignot G, Vieillefond A, Vacher S, Zerbib M, Debre B, Lidereau R, et al. Hedgehog pathway activation in human transitional cell carcinoma of the bladder. Br J Cancer 2012; 106:1177-86.
|
[25] |
He HC, Chen JH, Chen XB, Qin GQ, Cai C, Liang YX, et al. Expression of hedgehog pathway components is associated with bladder cancer progression and clinical outcome. Pathol Oncol Res 2012;18:349-55.
|
[26] |
Islam SS, Mokhtari RB, Noman AS, Uddin M, Rahman MZ, Azadi MA, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-tomesenchymal transition (EMT) in bladder cancer. Mol Carcinog 2016;55:537-51.
|
[27] |
Ghahhari NM, Babashah S. Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelialmesenchymal transition in cancer. Eur J Cancer 2015;51:1638-49.
|
[28] |
Tan M, Gong H, Zeng Y, Tao L, Wang J, Jiang J, et al. Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling. J Cell Biochem 2014;115:1762-7.
|
[29] |
Jing Y, Cui D, Guo W, Jiang J, Jiang B, Lu Y, et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett 2014;348:135-45.
|
[30] |
Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med 2014; 20:1199-205.
|
[31] |
Maraver A, Fernandez-Marcos PJ, Cash TP, Mendez-Pertuz M, Duenas M, Maietta P, et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest 2015;125:824-30.
|
[32] |
Hayashi T, Gust KM, Wyatt AW, Goriki A, Jager W, Awrey S, et al. Not all NOTCH is created equal:the oncogenic role of NOTCH2 in bladder Cancer and its implications for targeted therapy. Clin Cancer Res 2016;22:2981-92. http://dx.doi.org/10.1158/1078-0432.CCR-15-2360.
|
[33] |
Zhao L, Geng H, Liang ZF, Zhang ZQ, Zhang T, Yu DX, et al. Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Biochem Biophys Res Commun 2015;459:643-9.
|
[34] |
Steinmaus C, Yuan Y, Bates MN, Smith AH. Case-control study of bladder cancer and drinking water arsenic in the western United States. Am J Epidemiol 2003;158:1193-201.
|
[35] |
Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, et al. Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genomics 2015;16:212.
|
[36] |
Stueckle TA, Lu Y, Davis ME, Wang L, Jiang BH, Holaskova I, et al. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol 2012;261:204-16.
|
[37] |
Tokar EJ, Diwan BA, Waalkes MP. Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stemlike phenotype. Environ Health Perspect 2010;118:108-15.
|
[38] |
Patel N, Arya M, Muneer A, Powles T, Sullivan M, Hines J, et al. Molecular aspects of upper tract urothelial carcinoma. Urol Oncol 2014;32. 28 e11-20.
|
[39] |
Li Y, Wang Z, Wang S, Zhao J, Zhang J, Huang Y. Gremlinmediated decrease in bone morphogenetic protein signaling promotes aristolochic acid-induced epithelial-to-mesenchymal transition (EMT) in HK-2 cells. Toxicology 2012;297:68-75.
|
[40] |
Stiborova M, Frei E, Schmeiser HH. Biotransformation enzymes in development of renal injury and urothelial cancer caused by aristolochic acid. Kidney Int 2008;73:1209-11.
|
[41] |
Moore LE, Smith AH, Eng C, Kalman D, DeVries S, Bhargava V, et al. Arsenic-related chromosomal alterations in bladder cancer. J Natl Cancer Inst 2002;94:1688-96.
|
[42] |
Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumorinitiating cells. Proc Natl Acad Sci USA 2009;106:14016-21.
|
[43] |
Brandt WD, Matsui W, Rosenberg JE, He X, Ling S, Schaeffer EM, et al. Urothelial carcinoma:stem cells on the edge. Cancer Metastasis Rev 2009;28:291-304.
|
[44] |
Ho PL, Kurtova A, Chan KS. Normal and neoplastic urothelial stem cells:getting to the root of the problem. Nat Rev Urol 2012;9:583-94.
|
[45] |
van der Horst G, Bos L, van der Pluijm G. Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res 2012;10:995-1009.
|
[46] |
Volkmer JP, Sahoo D, Chin RK, Ho PL, Tang C, Kurtova AV, et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci USA 2012;109:2078-83.
|
[47] |
Borovski T, De Sousa EMF, Vermeulen L, Medema JP. Cancer stem cell niche:the place to be. Cancer Res 2011;71:634-9.
|
[48] |
Garg M. Urothelial cancer stem cells and epithelial plasticity:current concepts and therapeutic implications in bladder cancer. Cancer Metastasis Rev 2015;34:691-701.
|
[49] |
Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015; 517:209-13.
|
[50] |
Atlasi Y, Mowla SJ, Ziaee SA, Bahrami AR. OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 2007;120:1598-602.
|
[51] |
Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL. Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 2008;68:6281-91.
|
[52] |
Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, et al. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 2010;19:327-37.
|
[53] |
Sayan AE, Griffiths TR, Pal R, Browne GJ, Ruddick A, Yagci T, et al. SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc Natl Acad Sci USA 2009;106:14884-9.
|
[54] |
Zhao D, Besser AH, Wander SA, Sun J, Zhou W, Wang B, et al. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene 2015;34:5447-59.
|
[55] |
McConkey DJ, Lee S, Choi W, Tran M, Majewski T, Lee S, et al. Molecular genetics of bladder cancer:emerging mechanisms of tumor initiation and progression. Urol Oncol 2010;28:429-40.
|
[56] |
Overdevest JB, Thomas S, Kristiansen G, Hansel DE, Smith SC, Theodorescu D. CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res 2011;71:3802-11.
|
[57] |
Hofner T, Macher-Goeppinger S, Klein C, Schillert A, Eisen C, Wagner S, et al. Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy. Urol Oncol 2014;32:678-86.
|
[58] |
Kwon MJ, Han J, Seo JH, Song K, Jeong HM, Choi JS, et al. CD24 overexpression is associated with poor prognosis in luminal a and triple-negative breast Cancer. PLoS One 2015; 10:e0139112.
|
[59] |
Rao Q, Chen Y, Yeh CR, Ding J, Li L, Chang C, et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERbeta/CCL2/CCR2 EMT/MMP9 signals. Oncotarget 2016;7:7842-55.
|
[60] |
Maniecki MB, Etzerodt A, Ulhoi BP, Steiniche T, Borre M, Dyrskjot L, et al. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells. Int J Cancer 2012;131:2320-31.
|
[61] |
Greening DW, Gopal SK, Mathias RA, Liu L, Sheng J, Zhu HJ, et al. Emerging roles of exosomes during epithelialmesenchymal transition and cancer progression. Semin Cell Dev Biol 2015;40:60-71.
|
[62] |
Franzen CA, Blackwell RH, Todorovic V, Greco KA, Foreman KE, Flanigan RC, et al. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis 2015; 4:e163.
|
[63] |
Jeppesen DK, Nawrocki A, Jensen SG, Thorsen K, Whitehead B, Howard KA, et al. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 2014;14:699-712.
|
[64] |
Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell 2011;144:646-74.
|
[65] |
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours:accumulating evidence and unresolved questions. Nat Rev Cancer 2008;8:755-68.
|
[66] |
Shirakawa R, Fukai S, Kawato M, Higashi T, Kondo H, Ikeda T, et al. Tuberous sclerosis tumor suppressor complex-like complexes act as GTPase-activating proteins for Ral GTPases. J Biol Chem 2009;284:21580-8.
|
[67] |
Smith SC, Oxford G, Baras AS, Owens C, Havaleshko D, Brautigan DL, et al. Expression of ral GTPases, their effectors, and activators in human bladder cancer. Clin Cancer Res 2007;13:3803-13.
|
[68] |
Smith SC, Theodorescu D. The Ral GTPase pathway in metastatic bladder cancer:key mediator and therapeutic target. Urol Oncol 2009;27:42-7.
|
[69] |
Smith SC, Baras AS, Owens CR, Dancik G, Theodorescu D. Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic characteristics in human cancer. Cancer Res 2012;72:3480-91.
|
[70] |
Saito R, Shirakawa R, Nishiyama H, Kobayashi T, Kawato M, Kanno T, et al. Downregulation of Ral GTPase-activating protein promotes tumor invasion and metastasis of bladder cancer. Oncogene 2013;32:894-902.
|
[71] |
Choi W, Porten S, Kim S, Willis D, Plimack ER, HoffmanCensits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014;25:152-65.
|
[72] |
Karni-Schmidt O, Castillo-Martin M, Shen TH, Gladoun N, Domingo-Domenech J, Sanchez-Carbayo M, et al. Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. Am J Pathol 2011; 178:1350-60.
|
[73] |
Choi W, Shah JB, Tran M, Svatek R, Marquis L, Lee IL, et al. p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS One 2012;7:e30206.
|
[74] |
Guo CC, Dadhania V, Zhang L, Majewski T, Bondaruk J, Sykulski M, et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder Cancer. Eur Urol 2016. pii:S0302-2838(16)00246-3. http://dx.doi.org/10.1016/j.eururo.2016.02.056.
|
[75] |
Koga F, Kawakami S, Kumagai J, Takizawa T, Ando N, Arai G, et al. Impaired Delta Np63 expression associates with reduced beta-catenin and aggressive phenotypes of urothelial neoplasms. Br J Cancer 2003;88:740-7.
|
[76] |
Urist MJ, Di Como CJ, Lu ML, Charytonowicz E, Verbel D, Crum CP, et al. Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol 2002;161:1199-206.
|
[77] |
Giacobbe A, Compagnone M, Bongiorno-Borbone L, Antonov A, Markert EK, Zhou JH, et al. p63 controls cell migration and invasion by transcriptional regulation of MTSS1. Oncogene 2016;35:1602-8.
|
[78] |
Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 2011;18:1487-99.
|
[79] |
Wallerand H, Cai Y, Wainberg ZA, Garraway I, Lascombe I, Nicolle G, et al. Phospho-Akt pathway activation and inhibition depends on N-cadherin or phospho-EGFR expression in invasive human bladder cancer cell lines. Urol Oncol 2010;28:180-8.
|
[80] |
Chiyomaru T, Seki N, Inoguchi S, Ishihara T, Mataki H, Matsushita R, et al. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int J Oncol 2015;46:487-96.
|
[81] |
Cheng T, Roth B, Choi W, Black PC, Dinney C, McConkey DJ. Fibroblast growth factor receptors-1 and -3 play distinct roles in the regulation of bladder cancer growth and metastasis:implications for therapeutic targeting. PLoS One 2013;8:e57284.
|
[82] |
Matsumoto R, Tsuda M, Wang L, Maishi N, Abe T, Kimura T, et al. Adaptor protein CRK induces epithelial-mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop. Cancer Sci 2015;106:709-17.
|
[83] |
Hanze J, Henrici M, Hegele A, Hofmann R, Olbert PJ. Epithelial mesenchymal transition status is associated with anti-cancer responses towards receptor tyrosine-kinase inhibition by dovitinib in human bladder cancer cells. BMC Cancer 2013;13:589.
|
[84] |
Zhu Z, Zhu Z, Pang Z, Xing Y, Wan F, Lan D, et al. Short hairpin RNA targeting FOXQ1 inhibits invasion and metastasis via the reversal of epithelial-mesenchymal transition in bladder cancer. Int J Oncol 2013;42:1271-8.
|
[85] |
Li H, Wang J, Xiao W, Xia D, Lang B, Wang T, et al. Epigenetic inactivation of KLF4 is associated with urothelial cancer progression and early recurrence. J Urol 2014;191:493-501.
|
[86] |
Overdevest JB, Knubel KH, Duex JE, Thomas S, Nitz MD, Harding MA, et al. CD24 expression is important in male urothelial tumorigenesis and metastasis in mice and is androgen regulated. Proc Natl Acad Sci USA 2012;109:E3588-96.
|
[87] |
Agarwal N, Dancik GM, Goodspeed A, Costello JC, Owens C, Duex JE, et al. GON4L drives cancer growth through a YY1-androgen receptor-CD24 axis. Cancer Res 2016;76:5175-85. http://dx.doi.org/10.1158/0008-5472.CAN-16-1099.
|
[88] |
Ding G, Yu S, Cheng S, Li G, Yu Y. Androgen receptor (AR) promotes male bladder cancer cell proliferation and migration via regulating CD24 and VEGF. Am J Transl Res 2016;8:578-87.
|
[89] |
Lin C, Lin W, Yeh S, Li L, Chang C. Infiltrating neutrophils increase bladder cancer cell invasion via modulation of androgen receptor (AR)/MMP13 signals. Oncotarget 2015;6:43081-9.
|
[90] |
Ou Z, Wang Y, Liu L, Li L, Yeh S, Qi L, et al. Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget 2015;6:26065-78.
|
[91] |
Hsieh TF, Chen CC, Ma WL, Chuang WM, Hung XF, Tsai YR, et al. Epidermal growth factor enhances androgen receptor mediated bladder cancer progression and invasion via potentiation of AR transactivation. Oncol Rep 2013;30:2917-22.
|
[92] |
Yeatman TJ. A renaissance for SRC. Nat Rev Cancer 2004;4:470-80.
|
[93] |
Liu W, Kovacevic Z, Peng Z, Jin R, Wang P, Yue F, et al. The molecular effect of metastasis suppressors on Src signaling and tumorigenesis:new therapeutic targets. Oncotarget 2015;6:35522-41.
|
[94] |
Wu Y, Moissoglu K, Wang H, Wang X, Frierson HF, Schwartz MA, et al. Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proc Natl Acad Sci USA 2009;106:5807-12.
|
[95] |
Thomas S, Overdevest JB, Nitz MD, Williams PD, Owens CR, Sanchez-Carbayo M, et al. Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res 2011;71:832-41.
|
[96] |
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
|
[97] |
Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894-907.
|
[98] |
Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 2009;15:5060-72.
|
[99] |
Wiklund ED, Bramsen JB, Hulf T, Dyrskjot L, Ramanathan R, Hansen TB, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer 2011;128:1327-34.
|
[100] |
Chen MF, Zeng F, Qi L, Zu XB, Wang J, Liu LF, et al. Transforming growth factorbeta1 induces epithelial mesenchymal transition and increased expression of matrix metalloproteinase16 via miR200b downregulation in bladder cancer cells. Mol Med Rep 2014;10:1549-54.
|
[101] |
Tran MN, Choi W, Wszolek MF, Navai N, Lee IL, Nitti G, et al. The p63 protein isoform DeltaNp63alpha inhibits epithelialmesenchymal transition in human bladder cancer cells:role of MIR-205. J Biol Chem 2013;288:3275-88.
|
[102] |
Wu CL, Ho JY, Chou SC, Yu DS. MiR-429 reverses epithelialmesenchymal transition by restoring E-cadherin expression in bladder cancer. Oncotarget 2016;7:26593-603. http://dx.doi.org/10.18632/oncotarget.8557.
|
[103] |
Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol 2013;190:1059-68.
|
[104] |
Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K, et al. MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One 2013;8:e67686.
|
[105] |
Yu G, Yao W, Xiao W, Li H, Xu H, Lang B. MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. J Exp Clin Cancer Res 2014;33:779.
|
[106] |
Zeng T, Peng L, Chao C, Fu B, Wang G, Wang Y, et al. miR-451 inhibits invasion and proliferation of bladder cancer by regulating EMT. Int J Clin Exp Pathol 2014;7:7653-62.
|
[107] |
Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett 2015;589:3175-81.
|
[108] |
Xu X, Zhu Y, Liang Z, Li S, Xu X, Wang X, et al. c-Met and CREB1 are involved in miR-433-mediated inhibition of the epithelial-mesenchymal transition in bladder cancer by regulating Akt/GSK-3beta/Snail signaling. Cell Death Dis 2016;7:e2088.
|
[109] |
Xue M, Pang H, Li X, Li H, Pan J, Chen W. Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci 2016;107:18-27.
|
[110] |
Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, et al. Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder Cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 2016;11:e0147236.
|
[111] |
Adhim Z, Matsuoka T, Bito T, Shigemura K, Lee KM, Kawabata M, et al. In vitro and in vivo inhibitory effect of three Cox-2 inhibitors and epithelial-to-mesenchymal transition in human bladder cancer cell lines. Br J Cancer 2011; 105:393-402.
|
[112] |
Aparicio LA, Castosa R, Haz-Conde M, Rodriguez M, Blanco M, Valladares M, et al. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells. BMC Cancer 2014;14:507.
|
[113] |
Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, et al. Silibinin inhibits beta-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal 2013;25:2625-33.
|
[114] |
Wang C, Ge Q, Zhang Q, Chen Z, Hu J, Li F, et al. Targeted p53 activation by saRNA suppresses human bladder cancer cells growth and metastasis. J Exp Clin Cancer Res 2016;35:53.
|
[115] |
Zhang Y, Liu W, He W, Zhang Y, Deng X, Ma Y, et al. Tetrandrine reverses epithelial-mesenchymal transition in bladder cancer by downregulating Gli-1. Int J Oncol 2016;48:2035-42.
|
[116] |
Yan C, Liu D, Li L, Wempe MF, Guin S, Khanna M, et al. Discovery and characterization of small molecules that target the GTPase Ral. Nature 2014;515:443-7.
|
[117] |
Lim KH, O'Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, et al. Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 2006; 16:2385-94.
|
[118] |
Zipfel PA, Brady DC, Kashatus DF, Ancrile BD, Tyler DS, Counter CM. Ral activation promotes melanomagenesis. Oncogene 2010;29:4859-64.
|
[119] |
Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, et al. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol 2012;22:2063-8.
|
[120] |
Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M, et al. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol 2007;27:7538-50.
|
[121] |
Earl J, Rico D, Carrillo-de-Santa-Pau E, Rodriguez-Santiago B, Mendez-Pertuz M, Auer H, et al. The UBC-40 urothelial bladder cancer cell line index:a genomic resource for functional studies. BMC Genomics 2015;16:403.
|
[122] |
Liang CC, Park AY, Guan JL. In vitro scratch assay:a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007;2:329-33.
|
[123] |
Albini A, Benelli R. The chemo invasion assay:a method to assess tumor and endothelial cell invasion and its modulation. Nat Protoc 2007;2:504-11.
|
[124] |
Schaeffer D, Somarelli JA, Hanna G, Palmer GM, GarciaBlancoMA.Cellularmigrationandinvasionuncoupled:increased migration is not an inexorable consequence of epithelial-tomesenchymal transition. Mol Cell Biol 2014;34:3486-99.
|
[125] |
Kobayashi T, Owczarek TB, McKiernan JM, Abate-Shen C. Modelling bladder cancer in mice:opportunities and challenges. Nat Rev Cancer 2015;15:42-54.
|
[126] |
de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006;6:24-37.
|
[127] |
Puzio-Kuter AM, Castillo-Martin M, Kinkade CW, Wang X, Shen TH, Matos T, et al. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev 2009;23:675-80.
|
[128] |
Lu YC, Chen CN, Wang B, Hsu WM, Chen ST, Chang KJ, et al. Changes in tumor growth and metastatic capacities of J82 human bladder cancer cells suppressed by downregulation of calreticulin expression. Am J Pathol 2011; 179:1425-33.
|
[129] |
Wu Z, Owens C, Chandra N, Popovic K, Conaway M, Theodorescu D. RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia 2010;12:1003-12.
|
[130] |
Kim EY, Seo JM, Kim C, Lee JE, Lee KM, Kim JH. BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen species-linked pathway. Free Radic Biol Med 2010;49:1072-81.
|
[131] |
Kuwada M, Chihara Y, Luo Y, Li X, Nishiguchi Y, Fujiwara R, et al. Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer. Cancer Lett 2015;369:212-21.
|
[132] |
Wang H, Owens C, Chandra N, Conaway MR, Brautigan DL, Theodorescu D. Phosphorylation of RalB is important for bladder cancer cell growth and metastasis. Cancer Res 2010; 70:8760-9.
|
[133] |
Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW, et al. Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 2005;22:115-25.
|
[134] |
Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:role of fibroblast growth factor receptor-2. Cancer Res 2006;66:11271-8.
|
[135] |
Izawa JI, Sweeney P, Perrotte P, Kedar D, Dong Z, Slaton JW, et al. Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-beta gene therapy results partially from various antiangiogenic effects including endothelial cell apoptosis. Clin Cancer Res 2002;8:1258-70.
|
[136] |
Singh AV, Franke AA, Blackburn GL, Zhou JR. Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosisandtumorangiogenesis.CancerRes2006;66:1851-8.
|
[137] |
Chikazawa M, Inoue K, Fukata S, Karashima T, Shuin T. Expression of angiogenesis-related genes regulates different steps in the process of tumor growth and metastasis in human urothelial cell carcinoma of the urinary bladder. Pathobiology 2008;75:335-45.
|
[138] |
Karashima T, Sweeney P, Kamat A, Huang S, Kim SJ, BarEli M, et al. Nuclear factor-kappaB mediates angiogenesis and metastasis of human bladder cancer through the regulation of interleukin-8. Clin Cancer Res 2003;9:2786-97.
|
[139] |
Jager W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt AW, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget 2015;6:21522-32.
|
[140] |
Jager W, Moskalev I, Janssen C, Hayashi T, Awrey S, Gust KM, et al. Ultrasound-guided intramural inoculation of orthotopic bladder cancer xenografts:a novel high-precision approach. PLoS One 2013;8:e59536.
|
[141] |
Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for basic and clinical research on urological malignancies. Nat Rev Urol 2016[in press].
|
[142] |
Bernardo C, Costa C, Sousa N, Amado F, Santos L. Patientderived bladder cancer xenografts:a systematic review. Transl Res 2015;166:324-31.
|
[143] |
Hay JH, Busuttil A, Steel CM, Duncan W. The growth and histological characteristics of a series of human bladder cancer xenografts. Radiother Oncol 1986;7:331-40.
|
[144] |
Yamamoto S, Masui T, Murai T, Mori S, Oohara T, Makino S, et al. Frequent mutations of the p53 gene and infrequent Hand K-ras mutations in urinary bladder carcinomas of NON/Shi mice treated with N-butyl-N-(4-hydroxybutyl) nitrosamine. Carcinogenesis 1995;16:2363-8.
|
[145] |
Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 2014;16:982-91, 1-5.
|
[146] |
Amin MB. Histological variants of urothelial carcinoma:diagnostic, therapeutic and prognostic implications. Mod Pathol 2009;22(Suppl 2):S96-118.
|
[147] |
Mataraza JM, Gotwals P. Recent advances in immuno-oncology and the application to urological cancers. BJU Int 2016;118:506-14. http://dx.doi.org/10.1111/bju.13518.
|
[148] |
Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR. Urotheliumspecific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 1999;59:3512-7.
|
[149] |
Grippo PJ, Sandgren EP. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am J Pathol 2000;157:805-13.
|
[150] |
Ayala de la Pena F, Kanasaki K, Kanasaki M, Tangirala N, Maeda G, Kalluri R. Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. J Biol Chem 2011;286:20778-87.
|
[151] |
Stone 2nd R, Sabichi AL, Gill J, Lee IL, Adegboyega P, Dai MS, etal. Identification of genescorrelated with early-stage bladder cancer progression. Cancer Prev Res (Phila) 2010;3:776-86.
|
[152] |
Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 2011;473:101-4.
|
[153] |
Araki D, Takayama K, Inoue M, Watanabe T, Kumon H, Futaki S, et al. Cell-penetrating D-isomer peptides of p53 Cterminus:long-term inhibitory effect on the growth of bladder cancer. Urology 2010;75:813-9.
|
[154] |
van Bokhoven A, Varella-Garcia M, Korch C, Miller GJ. TSUPr1 and JCA-1 cells are derivatives of T24 bladder carcinoma cells and are not of prostatic origin. Cancer Res 2001;61:6340-4.
|
[1] |
Chia-Yi Chu Gina,W.K. Chung Leland,Gururajan Murali,Hsieh Chia-Ling,Josson Sajni,Nandana Srinivas,Sung Shian-Ying,Wang Ruoxiang,Boyang Wu Jason,E. Zhau Haiyen. Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics[J]. Asian Journal of Urology, 2019, 6(1): 65-81. |
[2] |
K. C. Biebighauser, Jianjun Gao, Priya Rao, Gene Landon, Lance Pagliaro, Colin P. N. Dinney, Jose Karam, Neema Navai. Non-seminomatous germ cell tumor with bone metastasis only at diagnosis: A rare clinical presentation[J]. Asian Journal of Urology, 2017, 4(2): 124-127. |
[3] |
Zhiying Shao, Andrew Z. Wang, Daniel J. George, Tian Zhang. Novel immunotherapy approaches for metastatic urothelial and renal cell carcinoma[J]. Asian Journal of Urology, 2016, 3(4): 268-277. |
[4] |
David J. McConkey, Woonyoung Choi, Andrea Ochoa, Colin P. N. Dinney. Intrinsic subtypes and bladder cancer metastasis[J]. Asian Journal of Urology, 2016, 3(4): 260-267. |
[5] |
Ruoxiang Wang, Gina C. Y. Chu, Stefan Mrdenovic, Alagappan A. Annamalai, Andrew E. Hendifar, Nicholas N. Nissen, James S. Tomlinson, Michael Lewis, Nallasivam Palanisamy, Hsian-Rong Tseng, Edwin M. Posadas, Michael R. Freeman, Stephen J. Pandol, Haiyen E. Zhau, Leland W. K. Chung. Cultured circulating tumor cells and their derived xenografts for personalized oncology[J]. Asian Journal of Urology, 2016, 3(4): 240-253. |
[6] |
Jun Gong, Manuel Caitano Maia, Nazli Dizman, Ameish Govindarajan, Sumanta K. Pal. Metastasis in renal cell carcinoma: Biology and implications for therapy[J]. Asian Journal of Urology, 2016, 3(4): 286-292. |
[7] |
Victor C. Lin, Chung-hsien Chen, Allen W. Chiu, . Laparoscopic nephroureterectomy for upper tract urothelial carcinoma e Update[J]. Asian Journal of Urology, 2016, 3(3): 115-119. |
[8] |
Zheng Cao, Natasha Kyprianou. Mechanisms navigating the TGF-β pathway in prostate cancer[J]. Asian Journal of Urology, 2015, 2(1): 11-18. |
|
|
|
|