|
|
Intrinsic subtypes and bladder cancer metastasis |
David J. McConkeya,b, Woonyoung Choic, Andrea Ochoac, Colin P. N. Dinneyc
|
a Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA; b Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA; c Department of Urology, U. T. M. D. Anderson Cancer Center, Houston, TX, USA |
|
|
Abstract Recent studies demonstrated that bladder cancers can be grouped into basal and luminal molecular subtypes that possess distinct biological and clinical characteristics. Basal bladder cancers express biomarkers characteristic of cancer stem cells and epithelial-tomesenchymal transition (EMT). Patients with basal cancers tend have more advanced stage and metastatic disease at presentation. In preclinical models basal human orthotopic xenografts are also more metastatic than luminal xenografts are, and they metastasize via an EMT-dependent mechanism. However, preclinical and clinical data suggest that basal cancers are also more sensitive to neoadjuvant chemotherapy (NAC), such that most patients with basal cancers who are aggressively managed with NAC have excellent outcomes. Importantly, luminal bladder cancers can also progress to become invasive and metastatic, but they appear to do so via mechanisms that are much less dependent on EMT and may involve help from stromal cells, particularly cancer-associated fibroblasts (CAFs). Although patients with luminal cancers do not appear to derive much clinical benefit from NAC, the luminal tumors that are infiltrated with stromal cells appear to be sensitive to anti-PDL1 antibodies and possibly other immune checkpoint inhibitors. Therefore, neoadjuvant and/or adjuvant immunotherapy may be the most effective approach in treating patients with advanced or metastatic infiltrated luminal bladder cancers.
|
Received: 15 September 2016
Published: 02 November 2016
|
|
|
[1] |
Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmstrom PU, Choi W, et al. Bladder cancer. Lancet 2016. http://dx.doi.org/10.1016/S0140-6736(16)30512-8. pii:S0140e 6736(16)30512-8.[Epub ahead of print].
|
[2] |
Czerniak B, Dinney C, McConkey D. Origins of bladder cancer. Annu Rev Pathol 2016;11:149-74.
|
[3] |
Biot C, Rentsch CA, Gsponer JR, Birkhauser FD, JusforguesSaklani H, Lemaitre F, et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med 2012;4. 137ra72.
|
[4] |
Lerner SP, Dinney C, Kamat A, Bivalacqua TJ, Nielsen M, O'Donnell M, et al. Clarification of bladder cancer disease states following treatment of patients with intravesical BCG. Bladder Cancer 2015;1:29-30.
|
[5] |
Dinney CP, Fisher MB, Navai N, O'Donnell MA, Cutler D, Abraham A, et al. Phase I trial of intravesical recombinant adenovirus mediated interferon-alpha2b formulated in Syn3 for Bacillus Calmette-Guerin failures in nonmuscle invasive bladder cancer. J Urol 2013;190:850-6.
|
[6] |
Ghasemzadeh A, Bivalacqua TJ, Hahn NM, Drake CG. New strategies in bladder cancer:a second coming for immunotherapy. Clin Cancer Res 2016;22:793-801.
|
[7] |
Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy:a single-arm, multicentre, phase 2 trial. Lancet 2016;387:1909-20.
|
[8] |
Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014;515:558-62.
|
[9] |
Knowles MA, Hurst CD. Molecular biology of bladder cancer:new insights into pathogenesis and clinical diversity. Nat Rev Cancer 2015;15:25-41.
|
[10] |
Zhang ZT, Pak J, Huang HY, Shapiro E, Sun TT, Pellicer A, et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 2001;20:1973-80.
|
[11] |
Ozaki K, Sukata T, Yamamoto S, Uwagawa S, Seki T, Kawasaki H, et al. High susceptibility of p53(+/-) knockout mice in N-butyl-N-(4-hydroxybutyl) nitrosamine urinary bladder carcinogenesis and lack of frequent mutation in residual allele. Cancer Res 1998;58:3806-11.
|
[12] |
Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT, et al. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 2002;62:4157-63.
|
[13] |
Puzio-Kuter AM, Castillo-Martin M, Kinkade CW, Wang X, Shen TH, Matos T, et al. Inactivation of p53 and Pten promotes invasive bladder cancer. Genes Dev 2009;23:675-80.
|
[14] |
Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol 2014;16:982-91. 1-5.
|
[15] |
Shin K, Lim A, Odegaard JI, Honeycutt JD, Kawano S, Hsieh MH, et al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol 2014;16:469-78.
|
[16] |
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747-52.
|
[17] |
Prat A, Ellis MJ, Perou CM. Practical implications of geneexpression-based assays for breast oncologists. Nat Rev Clin Oncol 2012;9:48-57.
|
[18] |
Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and longterm clinical benefit in breast cancer:the CTNeoBC pooled analysis. Lancet 2014;384:164-72.
|
[19] |
Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res BCR 2010;12:R68.
|
[20] |
von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30:1796-804.
|
[21] |
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70.
|
[22] |
Ellis MJ, Perou CM. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 2013;3:27-34.
|
[23] |
Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014;158:929-44.
|
[24] |
Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 2010;107:15449-54.
|
[25] |
Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 2013;154:61-74.
|
[26] |
Cancer Genome Atlas Research N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507:315-22.
|
[27] |
Choi W, Porten S, Kim S, Willis D, Plimack ER, HoffmanCensits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014;25:152-65.
|
[28] |
Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 2014;111:3110-5.
|
[29] |
Kim J, Akbani R, Creighton CJ, Lerner SP, Weinstein JN, Getz G, et al. Invasive bladder cancer:genomic insights and therapeutic promise. Clin Cancer Res 2015;21:4514-24.
|
[30] |
Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi BP, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 2016;30:27-42.
|
[31] |
Dyrskjot L, Thykjaer T, Kruhoffer M, Jensen JL, Marcussen N, Hamilton-Dutoit S, et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 2003;33:90-6.
|
[32] |
Lindgren D, Frigyesi A, Gudjonsson S, Sjodahl G, Hallden C, Chebil G, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 2010;70:3463-72.
|
[33] |
Blaveri E, Simko JP, Korkola JE, Brewer JL, Baehner F, Mehta K, et al. Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res 2005;11:4044-55.
|
[34] |
Lindgren D, Sjodahl G, Lauss M, Staaf J, Chebil G, Lovgren K, et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One 2012;7:e38863.
|
[35] |
Sjodahl G, Lauss M, Lovgren K, Chebil G, Gudjonsson S, Veerla S, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res 2012;18:3377-86.
|
[36] |
Rebouissou S, Bernard-Pierrot I, de Reynies A, Lepage ML, Krucker C, Chapeaublanc E, et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med 2014;6. 244ra91.
|
[37] |
Aine M, Eriksson P, Liedberg F, Sjodahl G, Hoglund M. Biological determinants of bladder cancer gene expression subtypes. Sci Rep 2015;5:10957.
|
[38] |
Guo CC, Dadhania V, Zhang L, Majewski T, Bondaruk J, Sykulski M, et al. Gene expression profile of the clinically aggressive micropapillary variant of bladder cancer. Eur Urol 2016. http://dx.doi.org/10.1016/j.eururo.2016.02.056. pii:S0302-2838(16)00246-3.[Epub ahead of print].
|
[39] |
McConkey DJ, Choi W, Shen Y, Lee IL, Porten S, Matin SF, et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naive urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy:a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur Urol 2016;69:855-62.
|
[40] |
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits. Nat Rev Cancer 2009;9:265-73.
|
[41] |
Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012;148:1015-28.
|
[42] |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15.
|
[43] |
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927-39.
|
[44] |
Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009;11:1487-95.
|
[45] |
Brabletz S, Brabletz T. The ZEB/miR-200 feedback loopea motor of cellular plasticity in development and cancer? EMBO Rep 2010;11:670-7.
|
[46] |
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008;9:582-9.
|
[47] |
Blanpain C, Fuchs E. p63:revving up epithelial stem-cell potential. Nat Cell Biol 2007;9:731-3.
|
[48] |
Tran MN, Choi W, Wszolek MF, Navai N, Lee IL, Nitti G, et al. The p63 protein isoform DeltaNp63alpha inhibits epithelialmesenchymal transition in human bladder cancer cells:role of MIR-205. J Biol Chem 2013;288:3275-88.
|
[49] |
Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 2012;22:725-36.
|
[50] |
Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012;150:165-78.
|
[51] |
Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013;154:1060-73.
|
[52] |
Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009; 16:67-78.
|
[53] |
Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015;527:525-30.
|
[54] |
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015; 527:472-6.
|
[55] |
Inoue K, Kamada M, Slaton JW, Fukata S, Yoshikawa C, Tamboli P, et al. The prognostic value of angiogenesis and metastasis-related genes for progression of transitional cell carcinoma of the renal pelvis and ureter. Clin Cancer Res 2002;8:1863-70.
|
[56] |
Slaton JW, Millikan R, Inoue K, Karashima T, Czerniak B, Shen Y, et al. Correlation of metastasis related gene expression and relapse-free survival in patients with locally advanced bladder cancer treated with cystectomy and chemotherapy. J Urol 2004;171:570-4.
|
[57] |
McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 2009;28:335-44.
|
[58] |
Dinney CP, Fishbeck R, Singh RK, Eve B, Pathak S, Brown N, et al. Isolation and characterization of metastatic variants from human transitional cell carcinoma passaged by orthotopic implantation in athymic nude mice. J Urol 1995;154:1532-8.
|
[59] |
Roth B, Jayaratna I, Sundi D, Cheng T, Melquist J, Choi W, et al. Employing an orthotopic model to study the role of epithelial-mesenchymal transition in bladder cancer metastasis. Oncotarget 2016. http://dx.doi.org/10.18632/oncotarget.11009[Epub ahead of print].
|
[1] |
Chia-Yi Chu Gina,W.K. Chung Leland,Gururajan Murali,Hsieh Chia-Ling,Josson Sajni,Nandana Srinivas,Sung Shian-Ying,Wang Ruoxiang,Boyang Wu Jason,E. Zhau Haiyen. Regulatory signaling network in the tumor microenvironment of prostate cancer bone and visceral organ metastases and the development of novel therapeutics[J]. Asian Journal of Urology, 2019, 6(1): 65-81. |
[2] |
Ka Wing Wong, Terence Chun-ting Lai, Ada Tsui-lin Ng, Brian Sze-ho Ho, James Hok-leung Tsu, Chiu Fung Tsang, W. K. Ma, Ming Kwong Yiu. Anterior perineal hernia after anterior exenteration[J]. Asian Journal of Urology, 2017, 4(4): 253-255. |
[3] |
Yu Guang Tan, Ernest Eu, Weber Lau Kam On, Hong Hong Huang. Pretreatment neutrophil-to-lymphocyte ratio predicts worse survival outcomes and advanced tumor staging in patients undergoing radical cystectomy for bladder cancer[J]. Asian Journal of Urology, 2017, 4(4): 239-246. |
[4] |
K. C. Biebighauser, Jianjun Gao, Priya Rao, Gene Landon, Lance Pagliaro, Colin P. N. Dinney, Jose Karam, Neema Navai. Non-seminomatous germ cell tumor with bone metastasis only at diagnosis: A rare clinical presentation[J]. Asian Journal of Urology, 2017, 4(2): 124-127. |
[5] |
Ruoxiang Wang, Gina C. Y. Chu, Stefan Mrdenovic, Alagappan A. Annamalai, Andrew E. Hendifar, Nicholas N. Nissen, James S. Tomlinson, Michael Lewis, Nallasivam Palanisamy, Hsian-Rong Tseng, Edwin M. Posadas, Michael R. Freeman, Stephen J. Pandol, Haiyen E. Zhau, Leland W. K. Chung. Cultured circulating tumor cells and their derived xenografts for personalized oncology[J]. Asian Journal of Urology, 2016, 3(4): 240-253. |
[6] |
Jun Gong, Manuel Caitano Maia, Nazli Dizman, Ameish Govindarajan, Sumanta K. Pal. Metastasis in renal cell carcinoma: Biology and implications for therapy[J]. Asian Journal of Urology, 2016, 3(4): 286-292. |
[7] |
Takashi Kobayashi. Understanding the biology of urothelial cancer metastasis[J]. Asian Journal of Urology, 2016, 3(4): 211-222. |
[8] |
Wei Wang, Haitao Liu, Shujie Xia. Thulium laser treatment for bladder cancer[J]. Asian Journal of Urology, 2016, 3(3): 130-133. |
[9] |
Thomas Y. Hsueh, Allen W. Chiu. Narrow band imaging for bladder cancer[J]. Asian Journal of Urology, 2016, 3(3): 126-129. |
[10] |
Kaiwen Li, Tianxin Lin, Chinese Bladder Cancer Consortium, Wei Xue, Xin Mu, Enci Xu, Xu Yang, Fubao Chen, Guangyong Li, Lulin Ma, Guoliang Wang, Chaozhao Liang, Haoqiang Shi, Ming Li, Mao Tang, Xueyi Xue, Yisong Lv, Yaoliang Deng, Chengyang Li, Zhiwen Chen, Xiaozhou Zhou, Fengshuo Jin, Xudong Liu, Jinxin Wei, Lei Shi, Xin Gou, Weiyang He, Liqun Zhou, Lin Cai, Liping Xie, Guanghou Fu, Xiangbo Kong, Hongyan Sun, Ye Tian, Lang Feng, Tiejun Pan, Yiyi Wu, Dongwen Wang, Hailong Hao, Benkang Shi, Yaofeng Zhu, Qiang Wei, Ping Han, Changli Wu, Dawei Tian, Zhangqun Ye, Zheng Liu, Zhiping Wang, Junqiang Tian, Lin Qi, Minfeng Chen, Wei Li, Jinchun Qi, Gongxian Wang, Longlong Fu, Zhaolin Sun, Guangheng Luo, Zhoujun Shen, Zhaowei Zhu, Jinchun Xing, Zhun Wu, Dong Wei, Xin Chen, Yanqun Na, Hongfeng Guo, Chunxi Wang, Zhihua Lu, Chuize Kong, Yang Liu, Jin Yang, Jianyun Hu, Xin Gao, Jielin Li, Changjun Yin, Pu Li, Shan Chen, Zhen Du, Jiongming Li, Yongji Yan, Xu Zhang, Shuang Huang, Fangjian Zhou, Zhiling Zhang, Yinghao Sun, Shuxiong Zeng, Song Cen, Jiaquan Zhou, Hanzhong Li, Jin Wen, Jian Huang. Current status of diagnosis and treatment of bladder cancer in China-Analyses of Chinese Bladder Cancer Consortium Database[J]. Asian Journal of Urology, 2015, 2(2): 63-69. |
|
|
|
|