|
|
Cultured circulating tumor cells and their derived xenografts for personalized oncology |
Ruoxiang Wanga, Gina C. Y. Chua, Stefan Mrdenovica, Alagappan A. Annamalaib, Andrew E. Hendifara, Nicholas N. Nissenb, James S. Tomlinsonc, Michael Lewisd, Nallasivam Palanisamye, Hsian-Rong Tsengf, Edwin M. Posadasa, Michael R. Freemanb, Stephen J. Pandola, Haiyen E. Zhaua, Leland W. K. Chunga,b
|
a Uro-Oncology Research, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; b Uro-Oncology Research, Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; c Department of Surgery, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA; d Department of Pathology, West Los Angeles VA Hospital, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA; e Henry Ford Health System, Detroit, MI, USA; f Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA |
|
|
Abstract Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patient's blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.
|
Received: 16 August 2016
Published: 02 November 2016
|
|
|
[1] |
Dubey AK, Gupta U, Jain S. Epidemiology of lung cancer and approaches for its prediction:a systematic review and analysis. Chin J Cancer 2016;35:71.
|
[2] |
Hanna N, Einhorn LH. Testicular cancer:a reflection on 50 years of discovery. J Clin Oncol 2014;32:3085-92.
|
[3] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.
|
[4] |
Cresswell GD, Apps JR, Chagtai T, Mifsud B, Bentley CC, Maschietto M, et al. Intra-tumor genetic heterogeneity in wilms tumor:clonal evolution and clinical implications. EBioMedicine 2016;9:120-9.
|
[5] |
Parker JS, Perou CM. Tumor heterogeneity:focus on the leaves, the trees, or the forest? Cancer Cell 2015;28:149-50.
|
[6] |
Sun XX, Yu Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 2015;36:1219-27.
|
[7] |
Chung LW, Huang WC, Sung SY, Wu D, Odero-Marah V, Nomura T, et al. Stromal-epithelial interaction in prostate cancer progression. Clin Genitourin Cancer 2006;5:162-70.
|
[8] |
Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS, et al. Coevolution of prostate cancer and bone stroma in three-dimensional coculture:implications for cancer growth and metastasis. Cancer Res 2008;68:9996-10003.
|
[9] |
Chappard D, Bouvard B, Basle MF, Legrand E, Audran M. Bone metastasis:histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review. Morphologie 2011;95:65-75.
|
[10] |
Miles FL, Sikes RA. Insidious changes in stromal matrix fuel cancer progression. Mol Cancer Res 2014;12:297-312.
|
[11] |
Yuan Y. Spatial heterogeneity in the tumor microenvironment. Cold Spring Harb Perspect Med 2016;6.
|
[12] |
Liotta LA, Kohn EC. The microenvironment of the tumourhost interface. Nature 2001;411:375-9.
|
[13] |
Place AE, Jin Huh S, Polyak K. The microenvironment in breast cancer progression:biology and implications for treatment. Breast Cancer Res 2011;13:227.
|
[14] |
Schofield PE, Stockler MR, Zannino D, Tebbutt NC, Price TJ, Simes RJ, et al. Hope, optimism and survival in a randomised trial of chemotherapy for metastatic colorectal cancer. Support Care Cancer 2016;24:401-8.
|
[15] |
Seah DS, Scott S, Guo H, Najita J, Lederman R, Frank E, et al. Variation in the attitudes of medical oncologists toward research biopsies in patients with metastatic breast cancer. Oncologist 2015;20:992-1000.
|
[16] |
Tanriverdi O, Yavuzsen T, Akman T, Senler FC, Taskoylu BY, Turhal S, et al. The perspective of non-oncologist physicians on patients with metastatic cancer and palliative care (ALONE study):a study of the palliative care working committee of the Turkish oncology group (TOG). J Cancer Educ 2015;30:253-9.
|
[17] |
Mohseny AB, Hogendoorn PC. Concise review:mesenchymal tumors:when stem cells go mad. Stem Cells 2011;29:397-403.
|
[18] |
Pinchuk IV, Mifflin RC, Saada JI, Powell DW. Intestinal mesenchymal cells. Curr Gastroenterol Rep 2010;12:310-8.
|
[19] |
Maheswaran S, Haber DA. Ex vivo culture of CTCs:an emerging resource to guide cancer therapy. Cancer Res 2015; 75:2411-5.
|
[20] |
Centenera MM, Raj GV, Knudsen KE, Tilley WD, Butler LM. Ex vivo culture of human prostate tissue and drug development. Nat Rev Urol 2013;10:483-7.
|
[21] |
Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol 2013;31:347-54.
|
[22] |
Hwang CI, Boj SF, Clevers H, Tuveson DA. Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 2016;238:197-204.
|
[23] |
Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas 2010;39:425-35.
|
[24] |
Gunderson K, Wang CY, Wang R. Global prostate cancer incidence and the migration, settlement, and admixture history of the Northern Europeans. Cancer Epidemiol 2011; 35:320-7.
|
[25] |
Chu GC, Zhau HE, Wang R, Rogatko A, Feng X, Zayzafoon M, et al. RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocr Relat Cancer 2014;21:311-26.
|
[26] |
Wang R, Sun X, Wang CY, Hu P, Chu CY, Liu S, et al. Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression. PLoS One 2012;7:e42653.
|
[27] |
Wang R, Xu J, Juliette L, Castilleja A, Love J, Sung SY, et al. Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 2005;15:353-64.
|
[28] |
Zhau HE, Goodwin TJ, Chang SM, Baker TL, Chung LW. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions:evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev Biol Anim 1997;33:375-80.
|
[29] |
Zhau HE, He H, Wang CY, Zayzafoon M, Morrissey C, Vessella RL, et al. Human prostate cancer harbors the stem cell properties of bone marrow mesenchymal stem cells. Clin Cancer Res 2011;17:2159-69.
|
[30] |
Pathak S, Nemeth MA, Multani AS, Thalmann GN, von Eschenbach AC, Chung LW. Can cancer cells transform normal host cells into malignant cells? Br J Cancer 1997;76:1134-8.
|
[31] |
Shiao SL, Chu GC, Chung LW. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett 2016;380:340-8.
|
[32] |
Beketic-Oreskovic L, Maric P, Ozretic P, Oreskovic D, Ajdukovic M, Levanat S. Assessing the clinical significance of tumor markers in common neoplasms. Front Biosci Elite Ed 2012;4:2558-78.
|
[33] |
Laughney AM, Elizalde S, Genovese G, Bakhoum SF. Dynamics of tumor heterogeneity derived from clonal karyotypic evolution. Cell Rep 2015;12:809-20.
|
[34] |
Masramon L, Vendrell E, Tarafa G, Capella G, Miro R, Ribas M, et al. Genetic instability and divergence of clonal populations in colon cancer cells in vitro. J Cell Sci 2006;119:1477-82.
|
[35] |
Fidler IJ, Gersten DM, Hart IR. The biology of cancer invasion and metastasis. Adv Cancer Res 1978;28:149-250.
|
[36] |
Warner TF, Krueger RG. Circulating lymphocytes and the spread of myeloma. Review of the evidence. Lancet 1978;1:1174-6.
|
[37] |
Weiss L, Ward PM. Cell detachment and metastasis. Cancer Metastasis Rev 1983;2:111-27.
|
[38] |
Feo-Zuppardi FJ, Taylor CW, Iwato K, Lopez MH, Grogan TM, Odeleye A, et al. Long-term engraftment of fresh human myeloma cells in SCID mice. Blood 1992;80:2843-50.
|
[39] |
He H, Yang X, Davidson AJ, Wu D, Marshall FF, Chung LW, et al. Progressive epithelial to mesenchymal transitions in ARCaPE prostate cancer cells during xenograft tumor formation and metastasis. Prostate 2010;70:518-28.
|
[40] |
Yang X, Shao C, Wang R, Chu CY, Hu P, Master V, et al. Optical imaging of kidney cancer with novel near infrared heptamethine carbocyanine fluorescent dyes. J Urol 2013;189:702-10.
|
[41] |
Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 2011;71:1526-32.
|
[42] |
Shao C, Liao CP, Hu P, Chu CY, Zhang L, Bui MH, et al. Detection of live circulating tumor cells by a class of nearinfrared heptamethine carbocyanine dyes in patients with localized and metastatic prostate cancer. PLoS One 2014;9:e88967.
|
[43] |
Liu S, Tian Z, Zhang L, Hou S, Hu S, Wu J, et al. Combined cell surface carbonic anhydrase 9 and CD147 antigens enable high-efficiency capture of circulating tumor cells in clear cell renal cell carcinoma patients. Oncotarget August 12016. http://dx.doi.org/10.18632/oncotarget.10979[Epub ahead of print].
|
[44] |
Ankeny JS, Court CM, Hou S, Li Q, Song M, Wu D, et al. Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer 2016;114:1367-75.
|
[45] |
Chen JF, Ho H, Lichterman J, Lu YT, Zhang Y, Garcia MA, et al. Subclassification of prostate cancer circulating tumor cells by nuclear size reveals very small nuclear circulating tumor cells in patients with visceral metastases. Cancer 2015;121:3240-51.
|
[46] |
Ignatiadis M, Riethdorf S, Bidard FC, Vaucher I, Khazour M, Rothe F, et al. International study on inter-reader variability for circulating tumor cells in breast cancer. Breast Cancer Res 2014;16:R43.
|
[47] |
Court CM, Ankeny JS, Sho S, Hou S, Li Q, Hsieh C, et al. Reality of single circulating tumor cell sequencing for molecular diagnostics in pancreatic cancer. J Mol Diagn 2016;18:688-96.
|
[48] |
Bobek V, Gurlich R, Eliasova P, Kolostova K. Circulating tumor cells in pancreatic cancer patients:enrichment and cultivation. World J Gastroenterol 2014;20:17163-70.
|
[49] |
Bobek V, Kacprzak G, Rzechonek A, Kolostova K. Detection and cultivation of circulating tumor cells in malignant pleural mesothelioma. Anticancer Res 2014;34:2565-9.
|
[50] |
Bobek V, Matkowski R, Gurlich R, Grabowski K, Szelachowska J, Lischke R, et al. Cultivation of circulating tumor cells in esophageal cancer. Folia Histochem Cytobiol 2014;52:171-7.
|
[51] |
Cegan M, Kolostova K, Matkowski R, Broul M, Schraml J, Fiutowski M, et al. In vitro culturing of viable circulating tumor cells of urinary bladder cancer. Int J Clin Exp Pathol 2014;7:7164-71.
|
[52] |
Kolostova K, Broul M, Schraml J, Cegan M, Matkowski R, Fiutowski M, et al. Circulating tumor cells in localized prostate cancer:isolation, cultivation in vitro and relationship to T-stage and Gleason score. Anticancer Res 2014;34:3641-6.
|
[53] |
Kolostova K, Cegan M, Bobek V. Circulating tumour cells in patients with urothelial tumours:enrichment and in vitro culture. Can Urol Assoc J 2014;8:E715-20.
|
[54] |
Kolostova K, Matkowski R, Gurlich R, Grabowski K, Soter K, Lischke R, et al. Detection and cultivation of circulating tumor cells in gastric cancer. Cytotechnology 2016;68:1095-102.
|
[55] |
Kolostova K, Spicka J, Matkowski R, Bobek V. Isolation, primary culture, morphological and molecular characterization of circulating tumor cells in gynecological cancers. Am J Transl Res 2015;7:1203-13.
|
[56] |
Kolostova K, Zhang Y, Hoffman RM, Bobek V. In vitro culture and characterization of human lung cancer circulating tumor cells isolated by size exclusion from an orthotopic nudemouse model expressing fluorescent protein. J Fluoresc 2014;24:1531-6.
|
[57] |
Malara N, Trunzo V, Foresta U, Amodio N, De Vitis S, Roveda L, et al. Ex-vivo characterization of circulating colon cancer cells distinguished in stem and differentiated subset provides useful biomarker for personalized metastatic risk assessment. J Transl Med 2016;14:133.
|
[58] |
Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, et al. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip 2014;14:89-98.
|
[59] |
Chen JY, Tsai WS, Shao HJ, Wu JC, Lai JM, Lu SH, et al. Sensitive and specific biomimetic lipid coated microfluidics to isolate viable circulating tumor cells and microemboli for cancer detection. PLoS One 2016;11:e0149633.
|
[60] |
Zhang Z, Shiratsuchi H, Lin J, Chen G, Reddy RM, Azizi E, et al. Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget 2014;5:12383-97.
|
[61] |
Paris PL, Kobayashi Y, Zhao Q, Zeng W, Sridharan S, Fan T, et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett 2009;277:164-73.
|
[62] |
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014;345:216-20.
|
[63] |
Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 2015;75:892-901.
|
[64] |
Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 2014;159:176-87.
|
[65] |
Hamilton G, Burghuber O, Zeillinger R. Circulating tumor cells in small cell lung cancer:ex vivo expansion. Lung 2015; 193:451-2.
|
[66] |
Court CM, Ankeny JS, Sho S, Tomlinson JS. Circulating tumor cells in gastrointestinal cancer:current practices and future directions. In:Bentrem D, Benson AB, editors. Cancer Treatment and Research. Gastrointentional malignancies. Springer International Publishing; 2016. p. 345-76.
|
[67] |
den Toonder J. Circulating tumor cells:the grand challenge. Lab Chip 2011;11:375-7.
|
[68] |
van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JM. Circulating tumor cell isolation and diagnostics:toward routine clinical use. Cancer Res 2011;71:5955-60.
|
[69] |
Kelbaek H. Sterile isolation of polymorphonuclear leukocytes from large blood volumes. J Clin Chem Clin Biochem 1985;23:17-20.
|
[70] |
Zipursky A, Bow E, Seshadri RS, Brown EJ. Leukocyte density and volume in normal subjects and in patients with acute lymphoblastic leukemia. Blood 1976;48:361-71.
|
[71] |
Martowicz A, Seeber A, Untergasser G. The role of EpCAM in physiology and pathology of the epithelium. Histol Histopathol 2016;31:349-55.
|
[72] |
Schnell U, Cirulli V, Giepmans BN. EpCAM:structure and function in health and disease. Biochim Biophys Acta 2013; 1828:1989-2001.
|
[73] |
Fong D, Moser P, Kasal A, Seeber A, Gastl G, Martowicz A, et al. Loss of membranous expression of the intracellular domain of EpCAM is a frequent event and predicts poor survival in patients with pancreatic cancer. Histopathology 2014;64:683-92.
|
[74] |
Gosens MJ, van Kempen LC, van de Velde CJ, van Krieken JH, Nagtegaal ID. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol 2007;20:221-32.
|
[75] |
Songun I, Litvinov SV, van de Velde CJ, Pals ST, Hermans J, van Krieken JH. Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. Br J Cancer 2005;92:1767-72.
|
[76] |
Beuran M, Negoi I, Paun S, Ion AD, Bleotu C, Negoi RI, et al. The epithelial to mesenchymal transition in pancreatic cancer:a systematic review. Pancreatology 2015;15:217-25.
|
[77] |
May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells:a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 2011;13:202.
|
[78] |
May M, Brookman-May S, Burger M, Koch S, Otto W, Brundl J, et al. A switch from epithelial to mesenchymal properties correlates with lymphovascular invasion in squamous cell carcinoma of the penis. Pathol Res Pract 2015;211:641-5.
|
[79] |
Liao MY, Lai JK, Kuo MY, Lu RM, Lin CW, Cheng PC, et al. An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 2015;6:24947-68.
|
[80] |
CiraciE,DellaBellaS,SalvucciO,RofaniC,SegarraM,BasonC, et al. Adult human circulating CD34-Lin-CD45-CD133- cells can differentiate into hematopoietic and endothelial cells. Blood 2011;118:2105-15.
|
[81] |
Anversa P, Kajstura J, Leri A. Circulating progenitor cells:search for an identity. Circulation 2004;110:3158-60.
|
[82] |
Williams ES, Rodriguez-Bravo V, Chippada-Venkata U, De Ia Iglesia-Vicente J, Gong Y, Galsky M, et al. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp 2015;105:53182.
|
[83] |
Preffer FI, Dombkowski D, Sykes M, Scadden D, Yang YG. Lineage-negative side-population (SP) cells with restricted hematopoietic capacity circulate in normal human adult blood:immunophenotypic and functional characterization. Stem Cells 2002;20:417-27.
|
[84] |
Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2012;2:675-709.
|
[85] |
Hart IR. New evidence for tumour embolism as a mode of metastasis. J Pathol 2009;219:275-6.
|
[86] |
TienYW,KuoHC,HoBI,ChangMC,ChangYT,ChengMF,etal.A high circulating tumor cell count in portal vein predicts liver metastasis from periampullary or pancreatic cancer:a high portalvenousCTCcountpredictslivermetastases. MedBaltim 2016;95:e3407.
|
[87] |
Catenacci DV, Chapman CG, Xu P, Koons A, Konda VJ, SiddiquiUD,etal.Acquisitionofportalvenouscirculatingtumor cells from patients with pancreaticobiliary cancers by endoscopic ultrasound. Gastroenterology 2015;149:1794-803.e4.
|
[88] |
Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem 2013;59:168-79.
|
[89] |
Ansieau S. EMT in breast cancer stem cell generation. Cancer Lett 2013;338:63-8.
|
[90] |
Hou Y, Wu K, Shi X, Li F, Song L, Wu H, et al. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. Gigascience 2015; 4:37.
|
[91] |
Liang J, Cai W, Sun Z. Single-cell sequencing technologies:current and future. J Genet Genomics 2014;41:513-28.
|
[92] |
de Lau WB, Snel B, Clevers HC. The R-spondin protein family. Genome Biol 2012;13:242.
|
[93] |
Mueller-Klieser W. Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 1987;113:101-22.
|
[94] |
Sutherland RM, Durand RE. Growth and cellular characteristics of multicell spheroids. Recent Results Cancer Res 1984; 95:24-49.
|
[95] |
Xu J, Wang R, Xie ZH, Odero-Marah V, Pathak S, Multani A, et al. Prostate cancer metastasis:role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate 2006;66:1664-73.
|
[96] |
Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res 2010;16:2833-44.
|
[97] |
Berridge MJ. Lymphocyte activation in health and disease. Crit Rev Immunol 1997;17:155-78.
|
[98] |
Gupta S. Mechanisms of transmembrane signalling in human T cell activation. Mol Cell Biochem 1989;91:45-50.
|
[99] |
Kilpatrick DC. Mechanisms and assessment of lectinmediated mitogenesis. Mol Biotechnol 1999;11:55-65.
|
[100] |
FacchinettiA,PanozzoM,PertileP,TessarolloL,BiasiG. In vivo and in vitrodeathofmatureTcellsinducedbyseparate signals to CD4 and alpha beta TCR. Immunobiology 1992;185:380-9.
|
[101] |
Sharma K, Wang RX, Zhang LY, Yin DL, Luo XY, Solomon JC, et al. Death the Fas way:regulation and pathophysiology of CD95 and its ligand. Pharmacol Ther 2000;88:333-47.
|
[102] |
Green DR, Scott DW. Activation-induced apoptosis in lymphocytes. Curr Opin Immunol 1994;6:476-87.
|
[103] |
Wang RX, Chu CY, Nissen NN, Lewis MS, Palanisamy N, Edderkaoui M, et al. Novel patient-derived CTC-xenograft models for the study of pancreati cancer biology, metastasis and therapy. In:American Pancreatic Association 2015 Annual Meeting,LoewsCoronadoBay,SanDiego,November4-7;2015.
|
[104] |
Wang RX, Posadas EM, Hu P, Chu CY, Sievert M, Bhowmick I, et al. Expansion of circulating tumor cells from prostate ancer patients by culturing circulating peripheral blood mononuclear cells. In:2012 Society for Basic Urological Research Fall Symposium, Trump International Beach Resort, Miami Beach, FL, November 15-18; 2012.
|
|
|
|