Please wait a minute...
Search Asian J Urol Advanced Search
Share 
Asian Journal of Urology, 2017, 4(1): 18-26    
  本期目录 | 过刊浏览 | 高级检索 |
The genetic framework for development of nephrolithiasis
Vinaya Vasudevan, Patrick Samson, Arthur D. Smith, Zeph Okeke
Smith Institute for Urology, Hofstra Northwell School of Medicine, Lake Success, NY, USA
The genetic framework for development of nephrolithiasis
Vinaya Vasudevan, Patrick Samson, Arthur D. Smith, Zeph Okeke
Smith Institute for Urology, Hofstra Northwell School of Medicine, Lake Success, NY, USA
下载:  PDF (813KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 Over 1%-15% of the population worldwide is affected by nephrolithiasis, which remains the most common and costly disease that urologists manage today. Identification of atrisk individuals remains a theoretical and technological challenge. The search for monogenic causes of stone disease has been largely unfruitful and a technological challenge; however, several candidate genes have been implicated in the development of nephrolithiasis. In this review, we will review current data on the genetic inheritance of stone disease, as well as investigate the evolving role of genetic analysis and counseling in the management of nephrolithiasis.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Vinaya Vasudevan
Patrick Samson
Arthur D. Smith
Zeph Okeke
关键词:  Genetics  Hypercalciuria  Nephrolithiasis  Urolithiasis  Calcium sensing receptor  Cystinuria  Medullary sponge kidney  Autosomal dominant polcystic kidney disease  Uric acid nephrolithiasis  Hypercalciuria    
Abstract: Over 1%-15% of the population worldwide is affected by nephrolithiasis, which remains the most common and costly disease that urologists manage today. Identification of atrisk individuals remains a theoretical and technological challenge. The search for monogenic causes of stone disease has been largely unfruitful and a technological challenge; however, several candidate genes have been implicated in the development of nephrolithiasis. In this review, we will review current data on the genetic inheritance of stone disease, as well as investigate the evolving role of genetic analysis and counseling in the management of nephrolithiasis.
Key words:  Genetics    Hypercalciuria    Nephrolithiasis    Urolithiasis    Calcium sensing receptor    Cystinuria    Medullary sponge kidney    Autosomal dominant polcystic kidney disease    Uric acid nephrolithiasis    Hypercalciuria
收稿日期:  2016-07-07      修回日期:  2016-07-12           出版日期:  2017-01-01      发布日期:  2017-02-16      整期出版日期:  2017-01-01
通讯作者:  Zeph Okeke,E-mail address:ZOkeke@northwell.edu    E-mail:  ZOkeke@northwell.edu
引用本文:    
Vinaya Vasudevan, Patrick Samson, Arthur D. Smith, Zeph Okeke. The genetic framework for development of nephrolithiasis[J]. Asian Journal of Urology, 2017, 4(1): 18-26.
Vinaya Vasudevan, Patrick Samson, Arthur D. Smith, Zeph Okeke. The genetic framework for development of nephrolithiasis. Asian Journal of Urology, 2017, 4(1): 18-26.
链接本文:  
http://www.ajurology.com/CN/  或          http://www.ajurology.com/CN/Y2017/V4/I1/18
[1] Curhan GC, Willet WC, Rimm EB, Stamper MJ. Family history and risk of kidney stones. J Am Soc Nephrol 1997;8:1568e73.
[2] Stechman MJ, Loy NY, Thakker RV. Genetics of hypercalciuric nephrolithiasis:renal stone disease. Ann N Y Acad Sci 2007; 1116:461e84.
[3] Moore ES, Coe FL, McMann BJ, Favus MJ. Idiopathic hypercalciuria in children:prevalence and metabolic characteristics. J Ped 1978;92:906e10.
[4] Lerolle N, Lantz B, Paillard F, Gattegno B, Flahault A, Ronco P, et al. Risk factors for nephrolithiasis in patients with familial idiopathic hypercalciuria. Am J Med 2002;113:99e103.
[5] Harangi F, Mehes K. Family investigations in indiopathic hypercalciuria. Eur J Pediatr 1993;152:64e8.
[6] Mehes K, Szelid Z. Autosomal dominant inheritance of hypercalciuria. Eur J Pediatr 1980;133:239e42.
[7] Nicolaidou P, Themeli S, Karpathios T, Georgouli H, Athanassaki K, Xaidara A, et al. Family pattern of idiopathic hypercalciuria and its subtypes. J Urol 1996;155:1042e4.
[8] Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med 1968;278:1313e8.
[9] Goldfarb DS, Fischer ME, Keich Y, Goldberg J. A twin study of genetic and dietary influences on nephrolithiasis:a report from the Vietnam Era Twin (VET) Registry. Kidney Int 2005;67:1053e61.
[10] Loredo-Osti JC, Roslin NM, Tessier J, Fujiwara TM, Morgan K, Bonnardeaux A. Segregation of urine calcium excretion in families ascertained for nephrolithiasis:evidence for a major gene. Kidney Int 2005;68:966e71.
[11] Hunter D, De Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV, et al. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J Bone Min Res 2001;16:371e8.
[12] Berisoglu H, Suleyman S, Alper O, Emin O. Calcium-sensing receptor gene polymorphisms in patients with calcium urolithiasis:a systematic review. Ren Fail 2014;36:1187e92.
[13] Vezzoli G, Terranegra A, Arcidiacono T, Biasion R, Coviello D, Syren ML, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int 2007;71:1155e62.
[14] Reed BY, Heller HJ, Gitomer WL, Pak CY. Mapping a gene defect in absorptive hypercalciuria to chromosome 1q23.3- q24. J Clin Endorcinol Metab 1999;84:3907e13.
[15] Zhou TB, Jiang ZP, Li AH, Jul L. Association of vitamin D receptor Bsml (rs1544410), Fok1(rs2228570), TaqI (rs731236), and Apal (rs 7975232) gene polymorphism with the nephrolithiasis susceptibility. J Recept Signal Transduct Res 2015; 35:107e14.
[16] Mittal RD, Mishra DK, Srivastava P, Manchanda P, Bid HK, Kappor R. Polymorphisms in the vitamin D receptor and the androgen receptor gene associated with the risk of urolithiasis. Indian J Clin Biochem 2010;25:119e26.
[17] Urabe Y, Tanikawa C, Takahashi A, Okada Y, Morizono T, Tsunoda T, et al. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible Loci at 5q35.3, 7p14.3, and 13q14.1. PLoS Genet 2012;8:e1002541.
[18] Xu Y, Zeng G, Mai Z, Ou L. Association study of DGKH gene polymorphisms with calcium oxalate stone in Chinese population. Urolithiasis 2014;42:379e85.
[19] Loh NY, Bentley L, Dimke H, Verkaart S, Tammaro P, Gorvin CM, et al. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5. PLoS One 2013;8:e55412.
[20] Suzuki Y, Pasch A, Bonny O, Mohaupt MG, Hediger MA, Frey FJ. Gain-of-function haplotype in the epithelial calcium channel TRPV6 is a risk factor for renal calcium stone formation. Hum Mol Genet 2008;17:1613e8.
[21] Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Min Res 2007;22:274e85.
[22] Sakhaee K, Maalouf NM, Sinnott B. Clinical review. Kidney stones 2012:pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 2012;97:1847e60.
[23] Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transpl 2012;27:3691e704.
[24] Soriano JR. Renal tubular acidosis:the clinical entity. J Am Soc Nephrol 2002;13:2160e70.
[25] Pajor AM. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch 2014;466:119e30.
[26] Okamoto N, Aruga S, Matsuzaki S, Takahashi S, Matsushita K, Kitamura T. Associations between renal sodium-citrate cotransporter (hNaDC-1) gene polymorphism and urinary citrate excretion in recurrent renal calcium stone formers and normal controls. Int J Urol 2007;14:344e9.
[27] Seeley HH, Loomba-Albrecht LA, Nagel M, Butani L, Bremer AA. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis in three siblings having the same genetic lesion but different clinical presentations. World J Pediatr 2012;8:177e80.
[28] Kausalya PJ, Amasheh S, Günzel D, Wurps H, Müller D, Fromm M, et al. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Investig 2006;116:878e91.
[29] Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. Mutations in the tight-junction gene claudin 19(CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 2006;79:949e57.
[30] Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol 2012;8:467e75.
[31] Hoppe B, Langman CB. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol 2003;18:986e91.
[32] Cochat P, Deloraine A, Rotily M, Olive F, Liponski I, Deries N. Epidemiology of primary hyperoxaluria type 1. Socieéteé de Neéphrologie and the Socieéteé de Neéphrologie Peédiatrique. Nephrol Dial Transpl 1995;10(Suppl. 8):3e7.
[33] Chevalier-Porst F, Rolland MO, Cochat P, Bozon D. Maternal isodisomy of the telomeric end of chromosome 2 is responsible for a case of primary hyperoxaluria type 1. Am J Med Genet A 2005;132A:80e3.
[34] Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int 2009;75:1264e71.
[35] Williams EL, Acquaviva C, Amoroso A, Chevalier F, CoulterMackie M, Monico CG, et al. Primary hyperoxaluria type 1:update and additional mutation analysis of the AGXT gene. Hum Mutat 2009;30:910e7.
[36] Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B, et al. IPHR Investigators. Transplantation outcomes in primary hyperoxaluria. Am J Transpl 2010;10:2493e501.
[37] Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat 2003;22:497.
[38] Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med 2013;369:649e58.
[39] Chlebeck PT, Milliner DS, Smith LH. Long-term prognosis in primary hyperoxaluria type Ⅱ (L-glyceric aciduria). Am J Kidney Dis 1994;23:255e9.
[40] Williams EL, Bockenhauer D, van't Hoff WG, Johri N, Laing C, Sinha MD, et al. The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficientin primary hyperoxaluria type 3. Nephrol Dial Transpl 2012;27:3191e5.
[41] Jiang Z, Grichtchenko Ⅱ, Boron WF, Aronson PS. Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 2002;277:33963e7.
[42] Aronson PS. Essential roles of CFEX-mediated Cl--oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney Int 2006;70:1207e13.
[43] Mancikova A, Krylov V, Hurba O, Sebesta I, Nakamura M, Ichida K, et al. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clin Exp Nephrol 2016;20:578e84.
[44] Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004;15:164e73.
[45] Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008;83:744e51.
[46] Hisatome I, Tanaka Y, Kotake H, Kosaka H, Hirata N, Fujimoto Y, et al. Renal hypouricemia due to enhanced tubularsecretion of urate associated with urolithiasis:successful treatment of urolithiasis by alkalization of urine K+, Na+-citrate. Nephron 1993;65:578e82.
[47] Claviere-Martin F, Ramos-Trujillo E, Garcia-Nieto V. Dent's disease:clinical features and molecular basis. Pediatr Nephrol 2011;26:693e704.
[48] Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, et al. High citrate diet delays progression of renal insufficiency in the CIC-5 knockout mouse model of Dent's disease. Kidney Int 2005;68:642e52.
[49] Fairbanks LD, Simmonds HA, Webster DR. Use of Intact erythrocytes in the diagnosis of inherited purine and pyrimidine disorders. J Inherit Metab Dis 1987;10:174e86.
[50] Nguyen KV, Naviaux RK, Paik KK, Nyhan WL. Lesch-Nyhan syndrome:mRNA expression of HPRT in patients with enzyme proven deficiency of HPRT and normal HPRT coding region of the DNA. Mol Genet Metab 2012;106:498e501.
[51] Sampat R, Fu R, Larovere LE, Torres RJ, Ceballos-Picot I, Fischbach M, et al. Mechanisms for phenotypic variation in Lesch-Nyhan disease and its variants. Hum Genet 2011;129:71e8.
[52] O'Neill JP, Finette BA. Transition mutations at CpG dinucleotides are the most frequent in vivo spontaneous singlebased substitution mutation in the human HPRT gene. Environ Mol Mutagen 1998;32:188e91.
[53] Nyhan WL. A disorder of uric acid metabolism and cerebral function in childhood. Arthritis Rheum 1965;8:659e64.
[54] Rosenbloom FM. Possible mechanism for increased purine biosynthesis de novo in Lesch Nyhan syndrome. Fed Proc 1968; 27:1063e6.
[55] Sorensen LB. Mechanism of excessive purine biosynthesis in hypoxanthine-guanine phosphoribosyltransferase deficiency. J Clin Investig 1970;49:968e78.
[56] Dello Strologo E, Pras E, Pontesilli C, Beccia E, Ricci-Barbini V, de Sanctis L, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers:a need for a new classification. J Am Soc Nephrol 2002;13:2547e53.
[57] Adreassen KH, Pedersen KV, Osther SS, Jung HU, Lildal SK, Osther PJ. How should patients with cysteine stone disease be evaluated and treated in the twenty-first century? Urolithiasis 2016;44:65e76.
[58] Eggermann T, Zerres K, Nunes V, Font-Llitjós M, Bisceglia L, Chatzikyriakidou A, et al. Clinical utility gene card for:Cystinuria. Eur J Hum Genet 2012;20. http://dx.doi.org/10.1038/ejhg.2011.163.
[59] Wong KA, Mein R, Wass M, Flinter F, Pardy C, Bultitude M, et al. The genetic diversity of cystinuria in a UK population of patients. BJU Int 2015;116:109e16.
[60] Barbosa M, Lopes A, Mota C, Martins E, Oliveira J, Alves S, et al. Clinical, biochemical and molecular characterization of cystinuria in a cohort of 12 patients. Clin Genet 2012;81:47e55.
[61] Torregrossa R, Anglani F, Fabris A, Gozzini A, Tanini A, Del Prete D, et al. Classification of GDNF gene sequence variations in patients with medullary sponge kidney disease. Am Soc Nephrol 2010;5:1205e10.
[62] Ginalski JM, Portmann L, Jaeger P. Does medullary sponge kidney cause nephrolithiasis? AJUR Am J Roentgenol 1990;155:299e302.
[63] McPhailEF, Gettman MT, PattersonDE, RangelLJ, KrambeckAE. Nephrolithiasis in medullary sponge kidney:evaluation of clinical and metabolic features. Urology 2012;79:277e81.
[64] Torres VE, Bengal RJ, Nickander KK, Grande JP, Low PA. Renal concentration of alpha tocopherol:dependence on gender and lack of effect on polycystic kidney disease in Han:SPRD rats. Am J Kidney Dis 1998;31:687e93.
[65] Grampas SA, Chandhoke PS, Fan J, Glass MA, Townsend R, Johnson AM, et al. Anatomic and metabolic risk factors for nephrolithiasis in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis 2000;36:53e7.
[66] Ferraz RR, Fonseca JM, Germino GG, Onuchic LF, Heilberg IP. Determination of urinary lithogenic parameters in murine models orthologous to autosomal dominant polycystic kidney disease. Urolithiasis 2014;42:301e7.
[67] Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA. Expression of osteopontin in rat kidneys:induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 2002;168:1173e81.
[68] Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, et al. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int 2007;72:592e8.
[69] Devyust O, Pirson Y. Genetics of hypercalciuric stone forming diseases. Kidney Int 2007;72:1065e72.
[70] Carr G, Sayer JA, Simmons NL. Expression and localization of the pyrophosphate transporter, ANK, in murine kidney cells. Cell Physiol Biochem 2007;20:507e16.
[71] Rungroi N, Nettuwakul C, Sudtachat N, Praditsap O, Sawasdee N, Sritippayawan S, et al. A whole genome SNP genotyping by DNA microarray and candidate gene association study for kidney stone disease. BMC Med Genet 2014;15:50.
[72] Wolf MT, Zalewski I, Martin FC, Ruf R, Müller D, Hennies HC, et al. Mapping a new suggestive gene locus for autosomal dominant nephrolithiasis to chromosome 9q33.2-q34.2 by total genome search for linkage. Nephrol Dial Transpl 2005;20:909e14.
[1] Husain Alenezi, John D. Denstedt. Flexible ureteroscopy: Technological advancements, current indications and outcomes in the treatment of urolithiasis[J]. Asian Journal of Urology, 2015, 2(3): 133-141.
[2] Christopher Hartman, Nikhil Gupta, David Leavitt, David Hoenig, Zeph Okeke, Arthur Smith. Advances in percutaneous stone surgery[J]. Asian Journal of Urology, 2015, 2(1): 26-32.
[1] Zhixiang Wang, Bing Liu, Xiaofeng Gao, Yi Bao, Yang Wang, Huamao Ye, Yinghao Sun, Linhui Wang. Laparoscopic ureterolysis with simultaneous ureteroscopy and percutaneous nephroscopy for treating complex ureteral obstruction after failed endoscopic intervention: A technical report[J]. Asian Journal of Urology, 2015, 2(4): 238 -243 .
[2] Louis R. Kavoussi. News from leading international academic urology departments[J]. Asian Journal of Urology, 2017, 4(1): 1 -2 .
[3] Rikiya Taoka, Yoshiyuki Kakehi. The influence of asymptomatic inflammatory prostatitis on the onset and progression of lower urinary tract symptoms in men with histologic benign prostatic hyperplasia[J]. Asian Journal of Urology, 2017, 4(3): 158 -163 .
[4] Cheuk Fan Shum, Weida Lau, Chang Peng Colin Teo. Medical therapy for clinical benign prostatic hyperplasia:a1 Antagonists, 5a reductase inhibitors and their combination[J]. Asian Journal of Urology, 2017, 4(3): 185 -190 .
[5] Foo Keong Tatt. Current consensus and controversies on male LUTS/BPH (part two)[J]. Asian Journal of Urology, 2018, 5(1): 8 -9 .
[6] Rishi R. Sekar, Claire M. De La Calle, Dattatraya Patil, Sarah A. Holzman, Yoram Baum, Umer Sheikh, Jonathan H. Huang, Adeboye O. Osunkoya, Brian P. Pollack, Haydn T. Kissick, Kenneth Ogan, Viraj A. Master. Major histocompatibility complex I upregulation in clear cell renal cell carcinoma is associated with increased survival[J]. Asian Journal of Urology, 2016, 3(2): 75 -81 .
[7] Ryan Yu, Jefferson Terry, Mutaz Alnassar, Jorge Demaria. Pediatric fibrous pseudotumor of the tunica vaginalis testis[J]. Asian Journal of Urology, 2016, 3(2): 99 -102 .
[8] Aso Omer Rashid, Saman Salih Fakhulddin. Risk factors for fever and sepsis after percutaneous nephrolithotomy[J]. Asian Journal of Urology, 2016, 3(2): 82 -87 .
[9] Christopher Hartman, Nikhil Gupta, David Leavitt, David Hoenig, Zeph Okeke, Arthur Smith. Advances in percutaneous stone surgery[J]. Asian Journal of Urology, 2015, 2(1): 26 -32 .
[10] Aldamanhori Reem,I.Osman Nadir,R.Chapple Christopher. Underactive bladder: Pathophysiology and clinical significance[J]. Asian Journal of Urology, 2018, 5(1): 17 -21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed